Preprints

color indicates supervised student


Publications

color indicates supervised student

Advancing inverse scattering with surrogate modeling and Bayesian inference for functional inputs

21. Sung, C.-L., Song, Y., and Hung, Y. (2025)
SIAM/ASA Journal on Uncertainty Quantification, accepted.

Modeling with uncertainty quantification identifies essential features of a non-canonical algal carbon-concentrating mechanism

20. Steensma, A. K., Kaste, J. A. M., Heo, J., Orr , D., Sung, C.-L., Shachar-Hill, Y., and Walker, B. J. (2025)
Plant Physiology, accepted.

Functional-input Gaussian processes with applications to inverse scattering problems

17. Sung, C.-L., Wang, W., Cakoni, F., Harris, I., and Hung, Y. (2024)
Statistica Sinica, 34(4), 1883-1902.

Mesh-clustered Gaussian process emulator for partial differential equation boundary value problems

16. Sung, C.-L., Wang, W., Ding, L., and Wang, X. (2024)
Technometrics, 66(3), 406-421.

Data-driven modeling of general fluid density under subcritical and supercritical conditions

11. Zhou, M., Chen, W. , Su, X., Sung, C.-L., Wang, X., and Ren, Z. (2023)
AIAA Journal, 61(4), 1519-1531.

A clustered Gaussian process model for computer experiments

10. Sung, C.-L., Haaland, B., Hwang, Y., and Lu, S. (2023)
Statistica Sinica, 33(2), 893-918.

Estimating functional parameters for understanding the impact of weather and government interventions on COVID-19 outbreak

8. Sung, C.-L. (2022)
Annals of Applied Statistics, 16(4), 2505-2522.

Calibration for computer experiments with binary responses and application to cell adhesion study

7. Sung, C.-L., Hung, Y., Rittase, W., Zhu, C., and Wu, C. F. J. (2020)
Journal of the American Statistical Association, 115(532), 1664-1674.

Kernel-smoothed proper orthogonal decomposition (KSPOD)-based emulation for prediction of spatiotemporally evolving flow dynamics

4. Chang, Y.-H., Zhang, L., Wang, X., Yeh, S.-T., Mak, S., Sung, C.-L., Wu, C. F. J., and Yang, V. (2019)
AIAA Journal, 57(12), 5269-5280.

Data-driven analysis and mean flow prediction using a physics-based surrogate model for design exploration

2. Yeh, S.-T., Wang, X., Sung, C.-L., Mak, S., Chang, Y.-H., Wu, C. F. J., and Yang, V. (2018)
AIAA Journal, 56(6):2429-2442.

Exploiting variance reduction potential in local Gaussian process search

1. Sung, C.-L., Gramacy, R. B., and Haaland, B. (2018)
Statistica Sinica, 28(2):577-600.