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Introduction Multi-fidelity data

Multi-Fidelity Simulations

Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

The simulation can be either

High-fidelity simulation: costly but close to the truth

Low-fidelity simulation: cheaper but less accurate

(intermediate-fidelity simulation)
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Introduction Multi-fidelity data

Motivated Example: Finite Element Simulations

Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

The model can be numerically solved via finite element method.

Input: x = (x1, x2) = (pressure, suction)

Output: f (x): maximum of thermal stress

e.g., x = (0.23, 0.71)

maximum of thermal stress f (0.23, 0.71) = 20.3

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 5 / 48



Introduction Multi-fidelity data

Motivated Example: Finite Element Simulations

Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

The model can be numerically solved via finite element method.

Input: x = (x1, x2) = (pressure, suction)

Output: f (x): maximum of thermal stress

e.g., x = (0.23, 0.71)

maximum of thermal stress f (0.23, 0.71) = 20.3

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 5 / 48



Introduction Multi-fidelity data

Motivated Example: Finite Element Simulations

Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

The model can be numerically solved via finite element method.

Input: x = (x1, x2) = (pressure, suction)

Output: f (x): maximum of thermal stress

e.g., x = (0.23, 0.71)

maximum of thermal stress f (0.23, 0.71) = 20.3

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 5 / 48



Introduction Multi-fidelity data

Multi-Fidelity Simulations

less accurate but cheaper accurate but expensive

Simulation accuracy

Simulation cost
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Introduction Multi-fidelity data

Statistical Emulation

Can we leverage both low- and high-fidelity simulations in order to

maximize the accuracy of model predictions,

while minimizing the cost associated with the simulations?

A cheaper statistical model emulating the model output based on the
simulations with multiple fidelities

Often called emulator or surrogate model

High-fidelity
data

Low-fidelity
data

Statistical
model

Model
output

Emulation
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Introduction Multi-fidelity data

Notation

fidelity level 1 2 3
output f1(x) f2(x) f3(x)

simulation cost C1 < C2 < C3

Goal: Emulate fL(x).

Input: Xl = {x[l]
i }

nl
i=1 for l = 1, . . . , L.

Output: yl := (fl (x))x∈Xl for l = 1, . . . , L
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Introduction Auto-regressive model

Existing Methods

The canonical approach is auto-regressive (AR) model (Kennedy and
O’Hagan, 2000).

AR model assumes additive structure of Gaussian processes (GPs).

f1(x) = Z1(x),
fl (x) = ρl−1fl−1(x) + Zl (x), for 2 ≤ l ≤ L.

Several extensions including (Qian et al., 2006; Qian and Wu, 2008;
Le Gratiet, 2013; Le Gratiet and Garnier, 2014; Perdikaris et al.,
2017).

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 9 / 48



Introduction Auto-regressive model

Existing Methods

Nested design, i.e.,

XL ⊆ XL−1 ⊆ · · · ⊆ X1 ⊆ Ω,

and x[l]
i = x[l−1]

i for i = 1, . . . , nl .

The nested property leads to more efficient inference in various
multi-fidelity emulation approaches (Qian et al., 2009; Qian, 2009).
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Introduction Auto-regressive model

Nested Design

𝑋! 𝑋"
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Introduction Auto-regressive model

Existing Methods

Q: Would it always follow an additive structure?

An example from Perdikaris et al. (2017), where n1 = 13, n2 = 8,
f1(x) = sin(8πx), and f2(x) = (x −

√
2)f 21 (x).
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Recursive Non-Additive (RNA) emulator

RNA emulator

We propose a Recursive Non-Additive emulator (RNA emulator) to
overcome this limitation in a recursive fashion:

f1(x) = W1(x),

fl (x) = Wl (x, fl−1(x)), l = 2, · · · , L,

The auto-regressive model (fl (x) = ρl−1fl−1(x) + Zl (x)) becomes a
special case!

Model the relationship {Wl}Ll=1 using independent GP priors
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Recursive Non-Additive (RNA) emulator

RNA emulator
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Recursive Non-Additive (RNA) emulator

RNA emulator

RNA emulator

W1(x) ∼ GP(α1, τ21K1(x, x′)),

Wl (z) ∼ GP(αl , τ
2
l Kl (z, z′)), l = 2, · · · , L,

where z = (x, y), and K1(x, x′) and Kl (z, z′) are a positive definite kernel.

e.g., squared exponential kernel:

K1(x, x′) =
d∏

j=1
exp

(
−

(xj − x ′j )2

θ1j

)

Kl (z, z′) = exp
(
−(y − y ′)2

θly

) d∏
j=1

exp
(
−

(xj − x ′j )2

θlj

)
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Recursive Non-Additive (RNA) emulator

Gaussian Process (GP)

The observed simulations yl follow a multivariate normal distribution:

y1 = W1(X1) ∼ Nn1(α11n1 , τ
2
1K1(X1)) and

yl = Wl (Xl , fl−1(Xl )) ∼ Nnl (αl1nl , τ
2
l Kl (Xl , fl−1(Xl ))),

for l = 2, . . . , L.

{K1(X1)}ij = K1(x[1]
i , x[1]

j )

{Kl (Xl , fl−1(Xl ))}ij = Kl ((x[l]
i , fl−1(x[l]

i )), (x[l]
i , fl−1(x[l]

i )))

fl−1(Xl ) = (yl−1)1:nl because of the nested assumption!
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Recursive Non-Additive (RNA) emulator

Parameter Estimation

The parameters {αl , τ
2
l ,θl}Ll=1 can be estimated by maximum

likelihood estimation: maximizing

nl log(τ2l ) + log(det(Kl (Xl , fl−1(Xl ))))

+ 1
τ2l

(yl − αl1nl )TKl (Xl , fl−1(Xl ))−1(yl − αl1nl ).
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Recursive Non-Additive (RNA) emulator

Posterior of fL(x) for a new input x

Based on the properties of conditional multivariate normal
distribution, it follows that

fl (x)|yl , fl−1(x) ∼ N (µl (x, fl−1(x)), σ2l (x, fl−1(x)))

for l = 2, . . . , L with

µl (x, fl−1(x)) = αl1nl + kT
l (x, fl−1(x))Kl (Xl , fl−1(Xl ))−1(yl − αl1nl ),

σ2l (x, fl−1(x)) = τ2l (1− kl (x, fl−1(x))TKl (Xl , fl−1(Xl ))−1kl (x, fl−1(x))).

Posterior of fL(x) at a new input x: p(fL(x)|y1, . . . , yL) =∫
· · ·
∫

p(fL(x)|yL, fL−1(x))p(fL−1(x)|yL−1, fL−2(x)) · · · p(f1(x)|y1)d(fL−1(x)) . . . d(f1(x)).
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Recursive Non-Additive (RNA) emulator

Remark on NARGP by Perdikaris et al. (2017)

Nonlinear auto-regressive GP (NARGP) proposed by Perdikaris et al.
(2017) also adopts the recursive scheme, but they rely on

1. Additive form of the kernel:

Kl (z, z′) = Φl1(x, x′)Φl2(fl−1(x), fl−1(x′)) + Φl3(x, x′),

2. Monte Carlo integration for the intractable posterior distribution:

p(fL(x)|y1, . . . , yL)

=
∫
· · ·
∫

p(fL(x)|yL, fL−1(x))p(fL−1(x)|yL−1, fL−2(x)) · · · p(f1(x)|y1)d(fL−1(x)) . . . d(f1(x)).

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 19 / 48



Recursive Non-Additive (RNA) emulator

RNA emulator

In contrast...

RNA emulator adopts the natural form of popular kernel choices:

K1(x, x′) =
d∏

j=1
φ(xj , x ′j ; θ1j),

Kl (z, z′) = φ(y , y ′; θly )
d∏

j=1
φ(xj , x ′j ; θlj), l = 2, · · · , L,

With these kernel choices, RNA emulator has the closed form
posterior mean and variance of fl (x) in a recursive fashion!
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Recursive Non-Additive (RNA) emulator

The closed form expression of RNA emulator

Proposition 1: The closed-form expressions

Under the squared exponential kernel, the posterior mean and
variance can be obtained as follows (Kyzyurova et al., 2018; Ming
and Guillas, 2021):

µ∗
l (x) : = E[fl (x)|y1, . . . , yl ]

= αl +
nl∑

i=1

ri

d∏
j=1

exp

(
−

(xj − x [l]
ij )2

θlj

)
1√

1 + 2
σ∗2

l−1(x)
θly

exp

(
−

(y [l−1]
i − µ∗

l−1(x))2

θly + 2σ∗2
l−1(x)

)
,

σ∗2
l (x) : = V[fl (x)|y1, . . . , yl ] = τ2l − (µ∗

l (x)− αl )2+( nl∑
i,k=1

ζik
(

ri rk − τ2l (K−1
l )ik

) d∏
j=1

exp

(
−

(xj − x [l]
ij )2 + (xj − x [l]

kj )2

θlj

))
.
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Recursive Non-Additive (RNA) emulator

The closed form expression of RNA emulator

Proposition 2: Interpolation property
The RNA emulator exhibits interpolation property. That is, µ∗l (Xl ) = yl ,
and σ∗2l (Xl ) = 0nl .

The closed form expressions can be derived under a Matérn kernel
with the smoothness parameter ν = 1.5 and ν = 2.5 as well.

Adopt the moment matching method to approximate the posterior
distribution. That is, fL(x)|y1, . . . , yL ∼ N (µ∗L(x), σ∗2L (x)).

R package called RNAmf is available.
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Recursive Non-Additive (RNA) emulator

RNA emulator
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Active learning for RNA emulator

After emulating...

However, the emulator still holds the uncertainty in some region!
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Active learning for RNA emulator

Active Learning

Active learning

is also known as sequential design,

sequentially searches for and acquires new data points at optimal
location by a given criterion,

aims to achieve enhanced accuracy while managing the limited
resources.

Well-established for single-fidelity GP emulators, but research for
multi-fidelity computer simulations is scarce and more challenging.
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Active learning for RNA emulator

Active Learning for RNA emulator

In multi-fidelity simulation, active learning requires

identifying optimal input locations,

identifying fidelity levels,

accounting for the respective simulation costs simultaneously.

Four active learning strategies (ALD, ALM, ALC, and ALMC) for
RNA emulator will be introduced.

The nested structure assumption implies that, in order to run the
simulation fl (x[l]

nl +1), we need to run fk(x[k]
nk +1) with x[k]

nk +1 = x[l]
nl +1 for

all 1 ≤ k ≤ l .
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Active learning for RNA emulator

Active Learning Decomposition (ALD)

Select the next point that maximizes the posterior predictive variance
σ∗2L (x).

Suppose L = 2. We have

σ∗22 (x) =V [E[f2(x)|f1(x), y1, y2]] + E [V[f2(x)|f1(x), y1, y2]]
:=V1(x) + V2(x)

To account for the simulation cost Cl , choose the next point x[l]
nl +1 at

level l by maximizing ALD criterion:

(l , x[l]
nl +1) = argmax

k∈{1,2};x∈Ω

Vk(x)∑k
j=1 Cj

.

The closed-form expression facilitates the computation of ALD.
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j=1 Cj

.

The closed-form expression facilitates the computation of ALD.
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Active learning for RNA emulator

Active Learning Cohn (ALC)

Select an input location that maximizes the variance reduction across
the entire input space after running this selected simulation (Cohn,
1993).

Choose the next point xnl +1 at fidelity level l by maximizing the ALC
criterion:

(l , x[l]
nl +1) = argmax

k∈{1,...,L};x∈Ω

∆σ2L(k, x)∑k
j=1 Cj

,

where ∆σ2L(k, x) =
∫

Ω
{
σ∗2L (ξ)− σ̃∗2L (ξ; k, x)

}
dξ is the average

reduction in variance (of the highest-fidelity emulator) with a choice
of the fidelity level k and the input location x.
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Active learning for RNA emulator

Two-step approach: ALMC

Inspired by Le Gratiet and Cannamela (2015), consider the
combination of ALM and ALC.

First, the optimal input location is selected by maximizing the
posterior predictive variance of the highest fidelity emulator:

x∗ = argmax
x∈Ω

σ∗2L (x).

Then, the ALC criterion determines the fidelity level with the
identified input location:

l∗ = argmax
l∈{1,...,L}

∆σ2L(l , x∗)∑l
j=1 Cj

,

which aims to maximize the ratio between the variance reduction and
the associated simulation cost.
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Active learning for RNA emulator

Demonstration
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Numerical Studies and Revisit Motivated Example

Numerical studies: Emulation performance

6 different functions with 2 or 3 levels of fidelity.

Compare proposed emulator RNAmf with Cokriging (Le Gratiet and
Garnier, 2014) and NARGP (Perdikaris et al., 2017).

100 repetitions with ntest = 1000 random test input locations
generated by space-filling designs.

Evaluate the prediction performance based on two criteria:
the root-mean-square error (RMSE)
continuous rank probability score (CRPS) (Gneiting and Raftery, 2007)
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Numerical Studies and Revisit Motivated Example

Numerical studies: Emulation performance
Two-level Perdikaris function (Perdikaris et al., 2017),{

f1(x) = sin(8πx)
f2(x) = (x −

√
2)f 21 (x)

for x ∈ [0, 1],

Two-level Park function (Park, 1991; Xiong et al., 2013), f1(x) = f2(x) + sin(x1)
10 f2(x)− 2x1 + x2

2 + x2
3 + 0.5

f2(x) = x1
2

[√
1 + (x2 + x2

3 ) x4
x21
− 1
]

+ (x1 + 3x4) exp (1 + sin(x3))
for x ∈ [0, 1]4.
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Numerical Studies and Revisit Motivated Example

Numerical studies: RMSE

RMSEs of six synthetic examples across 100 repetitions.Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 34 / 48



Numerical Studies and Revisit Motivated Example

Numerical studies: CRPS

CRPSs of six synthetic examples across 100 repetitions.Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 35 / 48



Numerical Studies and Revisit Motivated Example

Numerical studies: Computational time
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Computational time of six synthetic examples across 100 repetitions.
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Numerical Studies and Revisit Motivated Example

Active learning performance (Perdikaris)

Perdikaris function (1-dim).

Compare three proposed strategies ALD, ALM, ALC, and ALMC, with
a cokriging-based sequential design (CoKriging-CV) (Le Gratiet and
Cannamela, 2015)
a sequential design maximizing the rate of stepwise uncertainty
reduction using the AR model (MR-SUR) (Stroh et al., 2022)

Simulation costs of low- and high-fidelity simulators are C1 = 1 and
C2 = 3

Total simulation budget of Ctotal = 80.

10 repetitions with different initial designs.
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Numerical Studies and Revisit Motivated Example

Active learning performance (Perdikaris)
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RMSE and CRPS for the Perdikaris function with respect to the simulation cost.
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Numerical Studies and Revisit Motivated Example

Active learning performance (Perdikaris)
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Numerical Studies and Revisit Motivated Example

Revisit motivated example

Low-fidelity (left) and high-fidelity (right) simulations at x = (0.5, 0.45).

Input: x = (x1, x2) = (pressure, suction) ∈ Ω = [0.25, 0.75]2

Output: f (x): maximum of the thermal stress profile
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Numerical Studies and Revisit Motivated Example

Revisit motivated example

Perform the finite element simulations with n1 = 20 and n2 = 10.

The simulation time of the finite element simulations, which are
respectively C1 = 2.25 and C2 = 6.85 (seconds) will be used for
active learning.

10 repetitions with ntest = 100 random test input locations generated
by a space-filling design.

We perform finite element simulations using the Partial Differential
Equation Toolbox in MATLAB.
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Numerical Studies and Revisit Motivated Example

Blade: Emulation performance
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RMSE, CRPS, and computation time across 10 repetitions in the turbine blade
application.
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Numerical Studies and Revisit Motivated Example

Blade: Active learning performance
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Numerical Studies and Revisit Motivated Example

Blade: Active learning performance
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Conclusion

Conclusion

We propose a new model (RNA emulator) and three corresponding
active learning strategies (ALD, ALM, ALC, and ALMC).

RNA emulator provides the closed-form expressions for both the
posterior mean and variance under common kernel choices.

Active learnings are facilitated by these closed form expressions.

Numerical studies and real application show the effectiveness of our
approach.

R package RNAmf is available on CRAN (Heo and Sung, 2024).
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Conclusion
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