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Introduction Multi-fidelity data

Multi-Fidelity Simulations

@ Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

@ Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator



Introduction Multi-fidelity data

Multi-Fidelity Simulations

@ Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

@ Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

@ The simulation can be either

e High-fidelity simulation: costly but close to the truth

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator



Introduction Multi-fidelity data

Multi-Fidelity Simulations

@ Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

@ Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

@ The simulation can be either
e High-fidelity simulation: costly but close to the truth

o Low-fidelity simulation: cheaper but less accurate
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Introduction Multi-fidelity data

Multi-Fidelity Simulations

@ Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

@ Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

@ The simulation can be either
e High-fidelity simulation: costly but close to the truth
o Low-fidelity simulation: cheaper but less accurate

o (intermediate-fidelity simulation)
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Introduction Multi-fidelity data

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.
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Introduction Multi-fidelity data

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.

@ Input: x = (x1, x2) = (pressure, suction)
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Introduction Multi-fidelity data

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.
@ Input: x = (x1, x2) = (pressure, suction)
@ Output: f(x): maximum of thermal stress

@ eg., x=(0.23,0.71)

maximum of thermal stress 7(0.23,0.71) = 20.3
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Introduction Multi-fidelity data

Multi-Fidelity Simulations

less accurate but cheaper accurate but expensive

Simulation accuracy

s B

x = (0.50,0.50)

x = (0.23,0.71)

v

Simulation cost
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Introduction Multi-fidelity data

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator



Introduction Multi-fidelity data

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to

@ maximize the accuracy of model predictions,

@ while minimizing the cost associated with the simulations?
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Introduction Multi-fidelity data

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to
@ maximize the accuracy of model predictions,
@ while minimizing the cost associated with the simulations?

@ A cheaper statistical model emulating the model output based on the
simulations with multiple fidelities

e Often called emulator or surrogate model

High-fidelity
data

Low-fidelity
data

Emulation

Statistical
model
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Introduction Multi-fidelity data

Notation

fidelity level 1 2 3
output f(x) f>(x) f3(x)
simulation cost G < G < G
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Introduction Multi-fidelity data

Notation

fidelity level 1 2 3
output f(x) f>(x) f3(x)
simulation cost G < G < G

e Goal: Emulate f,(x).
@ Input: X = {xgll}ﬁll for/I=1,...,L

@ Output: yy := (fi(x))xex, for I=1,...,L
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Introduction Auto-regressive model

Existing Methods

@ The canonical approach is auto-regressive (AR) model (Kennedy and
O’Hagan, 2000).

@ AR model assumes additive structure of Gaussian processes (GPs).

f(x) = Z1(x),
f(x) = pi—1fi—1(x) + Z)(x), for 2</<L

@ Several extensions including (Qian et al., 2006; Qian and Wu, 2008;
Le Gratiet, 2013; Le Gratiet and Garnier, 2014; Perdikaris et al.,
2017).
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Introduction Auto-regressive model

Existing Methods

@ Nested design, i.e.,

Ul

_ -1 P
and x;* = x; fori=1,...,n,.

@ The nested property leads to more efficient inference in various

multi-fidelity emulation approaches (Qian et al., 2009; Qian, 2009).

10/48
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Introduction Auto-regressive model

Nested Design
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Introduction Auto-regressive model

Existing Methods

@ Q: Would it always follow an additive structure?
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Introduction Auto-regressive model

Existing Methods

@ Q: Would it always follow an additive structure?

—2-
0.00 0.25 0.50 0.75 1.00

Auto-regressive

== Emulator ws high-fidelity === low-fidelity

An example from Perdikaris et al. (2017), where ny = 13, n; =8,
fi(x) = sin(87x), and f(x) = (x — v2)F2(x).
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Recursive Non-Additive (RNA) emulator

RNA emulator

@ We propose a Recursive Non-Additive emulator (RNA emulator) to
overcome this limitation in a recursive fashion:

f(x) = Wi(x),
f(x) = Wi(x, fi—1(x)), I=2,---,L,

@ The auto-regressive model (fi(x) = p;—1fj—1(x) + Z)(x)) becomes a
special case!
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Recursive Non-Additive (RNA) emulator

RNA emulator

@ We propose a Recursive Non-Additive emulator (RNA emulator) to
overcome this limitation in a recursive fashion:

f(x) = Wi(x),
f(x) = Wi(x, fi—1(x)), I=2,---,L,

@ The auto-regressive model (fi(x) = p;—1fj—1(x) + Z)(x)) becomes a
special case!

@ Model the relationship {W;}L_; using independent GP priors

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 13 /48



Recursive Non-Additive (RNA) emulator

RNA emulator
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Recursive Non-Additive (RNA) emulator

RNA emulator

RNA emulator

Wi (x) ~ GP(aq, T2K1(x, X)),
Wi(z) ~ g73(0z/,7',2K/(z,z’))7 =2, L,

where z = (x, y), and Ki(x,x’) and K|(z,2’) are a positive definite kernel.
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Recursive Non-Additive (RNA) emulator

RNA emulator

RNA emulator
Wi (x) ~ gP(al,TzKl(x’xl))’
Wi(z) ~ GP(a;, 2 Ki(2,2)), 1=2,---,L,

where z = (x, y), and Ki(x,x’) and K|(z,2’) are a positive definite kernel.

@ e.g., squared exponential kernel:

xj — x!)?
xx)_Hexp< bg J)>

J

K,(z,z’):exp< )Hexp( by ;UX)>
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Recursive Non-Additive (RNA) emulator

Gaussian Process (GP)

@ The observed simulations y; follow a multivariate normal distribution:

Y1 = Wl(Xl) ~ an(allnlanKl(Xl)) and
y = Wi(X), fim1(X))) ~ Noy (e, 7 KI(X), fi-1(X1))),

forl=2,... L
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Recursive Non-Additive (RNA) emulator

Gaussian Process (GP)

@ The observed simulations y; follow a multivariate normal distribution:

Y1 = Wl(Xl) ~ an(allnlanKl(Xl)) and
yi = Wi(X), i1(X0)) ~ N, (L, 72KI(X0, Fio1 (X)),

forl=2,... L

o {Ki(x1)}y = Ki(x[", x!Y)

o {Ki(Xi, fia(A0))}y = Ki((x)". fia(xf). (", Fima ()
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Recursive Non-Additive (RNA) emulator

Gaussian Process (GP)

@ The observed simulations y; follow a multivariate normal distribution:

Y1 = Wl(Xl) ~ an(allnlanKl(Xl)) and
yi = Wi(X), i1(X0)) ~ N, (L, 72KI(X0, Fio1 (X)),

forl=2,... L

o {Ki(x1)}y = Ki(x[", x!Y)

o (KX, (X))} = K i (")), (", fia ()

@ fi_1(X)) = (¥/-1)1:n, because of the nested assumption!
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Recursive Non-Additive (RNA) emulator

Parameter Estimation

@ The parameters {ay,72,0,}L_; can be estimated by maximum
likelihood estimation: maximizing

ny log(77) + log(det(Ki (X}, fi-1(X)))))

1 _
+ p(w — a1, KX, i1 (X)) "My — auly).
i
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Recursive Non-Additive (RNA) emulator

Posterior of f;(x) for a new input x

@ Based on the properties of conditional multivariate normal
distribution, it follows that

fx)Ny1, 1) ~ N (i, fi-1(x)), o7 (x, fi-1(x)))
for I =2,...,L with

(%, fi-1(x)) = ayln, + k[ (%, f-1(x))Ki( &), f-1(X0) "y — ailn),
o7 (x, fi1(x)) = T7(L = ky(x, i1 (x)) T Ki( X, fi_1 (X)) kg (x, fio1(x))).
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Recursive Non-Additive (RNA) emulator

Posterior of f;(x) for a new input x

@ Based on the properties of conditional multivariate normal
distribution, it follows that

ANy, fi1(x) ~ N, fi-1(x)), 07 (x, fi-1(x)))

for I =2,...,L with

(%, fi-1(x)) = ayln, + k[ (%, f-1(x))Ki( &), f-1(X0) "y — ailn),
o7 (x, fi1(x)) = T7(L = ky(x, i1 (x)) T Ki( X, fi_1 (X)) kg (x, fio1(x))).

@ Posterior of f (x) at a new input x: p(fL(x)|y1,...,y1) =

/"'/P(fL(X)|YLvfL—l(X))P(fL—l(X)|YL—17fL—Q(x))"'P(ﬂ(x)‘yl)d(ﬁ—l(x))---d(fl(x))-
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Recursive Non-Additive (RNA) emulator

Remark on NARGP by Perdikaris et al. (2017)

@ Nonlinear auto-regressive GP (NARGP) proposed by Perdikaris et al.
(2017) also adopts the recursive scheme, but they rely on

1. Additive form of the kernel:
Ki(z,2') = &1 (x, X )®p2(fi—1(x), i—1(x)) + ®13(x, X),
2. Monte Carlo integration for the intractable posterior distribution:

p(fL()ly1, -5 yL)

:/‘n/p(fL(x)|yL,fL,l(x))P(fL—l(x)WL—lvfL72(X))"'P(fl(x)\yl)d(fL—l(x))-~~d(f1(x))-
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Recursive Non-Additive (RNA) emulator

RNA emulator

In contrast...

@ RNA emulator adopts the natural form of popular kernel choices:
d
Ki(x,x') = H (g, X7 01)),

d
Ki(z,2') = oy, ¥ 01) [ 604, %}: 05), 1 =2,--- L,
j=1
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Recursive Non-Additive (RNA) emulator

RNA emulator

In contrast...

@ RNA emulator adopts the natural form of popular kernel choices:
d
Ki(x,x') = H (g, X7 01)),

d
Ki(z,2') = oy, ¥ 01) [ 604, %}: 05), 1 =2,--- L,
j=1

@ With these kernel choices, RNA emulator has the closed form
posterior mean and variance of fi(x) in a recursive fashion!
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Recursive Non-Additive (RNA) emulator

The closed form expression of RNA emulator

Proposition 1: The closed-form expressions

@ Under the squared exponential kernel, the posterior mean and
variance can be obtained as follows (Kyzyurova et al., 2018; Ming
and Guillas, 2021):

ui(x) - = E[f(X)ly, - i

I—
[1-1] e (

(x,—x”)z 1 Y =, (0)
SDMICE (U
1

o
2 =1
+ o,

o7 2(x) : = VIAX)lyL, -yl = 77 = (1 (x) — )+

n d (x — X[’])Z + (% XI[<I'])2
Z G (rire — T2 (K i) HeXP o g :
l

ik=1 j=1
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Recursive Non-Additive (RNA) emulator

The closed form expression of RNA emulator

Proposition 2: Interpolation property

The RNA emulator exhibits interpolation property. That is, uj (X)) =y,
and 0'72(X/) = On,.
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Recursive Non-Additive (RNA) emulator

The closed form expression of RNA emulator

Proposition 2: Interpolation property

The RNA emulator exhibits interpolation property. That is, uj (X)) =y,
and 0'72(X/) = On,.

@ The closed form expressions can be derived under a Matérn kernel
with the smoothness parameter v = 1.5 and v = 2.5 as well.
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Recursive Non-Additive (RNA) emulator

The closed form expression of RNA emulator

Proposition 2: Interpolation property

The RNA emulator exhibits interpolation property. That is, uj (X)) =y,
and 0'72(X/) = On,.

@ The closed form expressions can be derived under a Matérn kernel
with the smoothness parameter v = 1.5 and v = 2.5 as well.

@ Adopt the moment matching method to approximate the posterior
distribution. That is, f.(X)|y1,. ..,y ~ N(u}(x), o0}%(x)).

@ R package called RNAmf is available.
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Recursive Non-Additive (RNA) emulator

RNA emulator

0.00 0.25 0.50 075 1.00 0.00 0.25 0.50 0.75 1.00
Auto-regressive RNA

=== Emulator was highfidelity low—fidelity
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Active learning for RNA emulator

After emulating...

-2 - _2 - I ' l ' 1
0.00 0.25 0.50 075 1.00 0.00 0.25 0.50 0.75 1.00

Auto-regressive RNA

== Emulator wlw high-fidelity low-fidelity

However, the emulator still holds the uncertainty in some region!
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Active learning for RNA emulator

Active Learning

@ Active learning

@ is also known as sequential design,

e sequentially searches for and acquires new data points at optimal
location by a given criterion,

@ aims to achieve enhanced accuracy while managing the limited
resources.
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Active learning for RNA emulator

Active Learning

@ Active learning

@ is also known as sequential design,

e sequentially searches for and acquires new data points at optimal
location by a given criterion,

@ aims to achieve enhanced accuracy while managing the limited
resources.

@ Well-established for single-fidelity GP emulators, but research for
multi-fidelity computer simulations is scarce and more challenging.
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Active learning for RNA emulator

Active Learning for RNA emulator

@ In multi-fidelity simulation, active learning requires
o identifying optimal input locations,
o identifying fidelity levels,

e accounting for the respective simulation costs simultaneously.

26 /48
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Active learning for RNA emulator

Active Learning for RNA emulator

@ In multi-fidelity simulation, active learning requires
o identifying optimal input locations,
o identifying fidelity levels,

e accounting for the respective simulation costs simultaneously.

@ Four active learning strategies (ALD, ALM, ALC, and ALMC) for
RNA emulator will be introduced.

26 /48
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Active learning for RNA emulator

Active Learning for RNA emulator

@ In multi-fidelity simulation, active learning requires
o identifying optimal input locations,
o identifying fidelity levels,
e accounting for the respective simulation costs simultaneously.

@ Four active learning strategies (ALD, ALM, ALC, and ALMC) for
RNA emulator will be introduced.

@ The nested structure assumption implies that, in order to run the
simulation f/(xLII]H), we need to run fk(xE:kk]H) with XErkk]H = XLI/]H for

all1 <k <[

NSYSU 26 /48
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Active learning for RNA emulator

Active Learning Decomposition (ALD)

@ Select the next point that maximizes the posterior predictive variance
ar2(x).
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Active learning for RNA emulator

Active Learning Decomposition (ALD)

@ Select the next point that maximizes the posterior predictive variance

ai?(x).
@ Suppose L = 2. We have

032(x) =V [E[H(x)|fi(x), y1,¥2]] + E[VIH(x)|f(x), y1, y2]]
=V (X) + V2(X)
[]

@ To account for the simulation cost C;, choose the next point x;,
level / by maximizing ALD criterion:

(/,x[I] = argmax Vix)
ke{1,2};xeQ ZJ 1 C

@ The closed-form expression facilitates the computation of ALD.
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Active learning for RNA emulator

Active Learning MacKay (ALM)

@ Select the next point that maximizes the posterior predictive variance
o72(x) (MacKay, 1992).
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Active learning for RNA emulator

Active Learning MacKay (ALM)

@ Select the next point that maximizes the posterior predictive variance
o72(x) (MacKay, 1992).

@ To account for the simulation cost C;, choose the next point XLI/]H at
level I by maximizing ALM criterion:

*2
(/,x[I] )= argmax ().

= .
ke{l,...,L};xeQ Zj:l CJ

@ The closed-form expression of o}2(x) facilitates the computation of
ALM criterion.
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Active learning for RNA emulator

Active Learning Cohn (ALC)

@ Select an input location that maximizes the variance reduction across
the entire input space after running this selected simulation (Cohn,
1993).
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Active learning for RNA emulator

Active Learning Cohn (ALC)

@ Select an input location that maximizes the variance reduction across
the entire input space after running this selected simulation (Cohn,

1993).
@ Choose the next point x,+1 at fidelity level / by maximizing the ALC
criterion:
Ao?(k,x
(/,XLII]H) = argmax M
ke{l,...,L};xeQ ZJ 1 C
where Ao?(k,x) = [o {0}2(&) — 572(&; k,x)} € is the average

reduction in variance (of the highest-fidelity emulator) with a choice
of the fidelity level k and the input location x.
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Active learning for RNA emulator

Two-step approach: ALMC

@ Inspired by Le Gratiet and Cannamela (2015), consider the
combination of ALM and ALC.
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Active learning for RNA emulator

Two-step approach: ALMC

@ Inspired by Le Gratiet and Cannamela (2015), consider the
combination of ALM and ALC.

@ First, the optimal input location is selected by maximizing the
posterior predictive variance of the highest fidelity emulator:

x* = argmax o}2(x).
xeQ
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Active learning for RNA emulator

Two-step approach: ALMC

@ Inspired by Le Gratiet and Cannamela (2015), consider the
combination of ALM and ALC.

@ First, the optimal input location is selected by maximizing the
posterior predictive variance of the highest fidelity emulator:

x* = argmax o}2(x).
xeQ

@ Then, the ALC criterion determines the fidelity level with the
identified input location:

Ac?(l,x*
I* = argmax M
1e{lty 2j=1 G

I

which aims to maximize the ratio between the variance reduction and
the associated simulation cost.
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Active learning for RNA emulator

Demonstration

| MMM | MM |

000 025 050 075 100000 025 050 075 100000 025 050 075 100000 025 050 075 1.00

low-fidelity # high-fidelity == prediction <% new point

I Y \ﬂ Y. |

000 025 050 075 100000 025 050 075 100000 025 050 075 100000 025 050 075 1.00

ALD ALM ALC ALMC

level — high-fidelity — low-fidelity — predictive variance
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Numerical Studies and Revisit Motivated Example

Numerical studies: Emulation performance

@ 6 different functions with 2 or 3 levels of fidelity.

@ Compare proposed emulator RNAmf with Cokriging (Le Gratiet and
Garnier, 2014) and NARGP (Perdikaris et al., 2017).

@ 100 repetitions with nest = 1000 random test input locations
generated by space-filling designs.

@ Evaluate the prediction performance based on two criteria:

e the root-mean-square error (RMSE)
e continuous rank probability score (CRPS) (Gneiting and Raftery, 2007)

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator NSYSU 32/48



Numerical Studies and Revisit Motivated Example

Numerical studies: Emulation performance

@ Two-level Perdikaris function (Perdikaris et al., 2017),

fi(x) = sin(87x)
{ hlx) = (x — va)R(x) o X S 01

@ Two-level Park function (Park, 1991; Xiong et al., 2013),

fi(x) = f(x) + 20U £ (x) — 2x1 + 32 + xZ + 0.5

4
R(x) =3 {\/m 1} —+ (x1 + 3xa) exp (1 + sin(x3)) for x € [0, 1],

Perdikaris ‘ Branin | Park | Borehole ‘ Currin ‘ Franke
d 1 2 4 8 2 2
ny 13 20 40 60 20 20
o 8 15 20 30 10 15
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Numerical Studies and Revisit Motivated Example

Numerical studies: RMSE

Perdikaris Branin Park
: 80- . '
06- . |
s 60- 1 010- ° ¢ :
04- 4 . 4 i
40- i
0.05-
02-
20-
Borehole Currin Franke
4- b4 1.6- °
15-
3 . 12- e
2 10

0.8-

I

; 0.5-

model E3 RNAmf EJ CoKriging E3 NARGP
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Numerical Studies and Revisit Motivated Example

Numerical studies: CRPS

Perdikaris Branin Park
04 ° °
] I l 0 0.08-
i . 2 !
03 : 006-
t 30- ! ¢

Borehole Currin Franke
. 10- S
15 075 $ 08 ?
‘ { ! |
10 0.50 H 06- .
i i
05- 025- 04- é
— —_— ’_T‘_l I —

02- ' ! .

model E3 RNAmf E3 CoKriging E3 NARGP
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Numerical Studies and Revisit Motivated Example

Numerical studies: Computational time

.=

i
(<]
K2R
(5]
£
=
IS
o
=] H
2 :
8 50:
= N
3
£
o
) ﬁ
0 —— —— —— —— —— o——
1%} =] = @ = @ %) = x @ c ) %) c x @ = )
g § & £ 5 % g § & 2 5 % g § & £ 5 %
T o g © i T o s © O T a S O =z
& @ & @ S a
model £ RNAmf E3 CoKriging £ NARGP

Computational time of six synthetic examples across 100 repetitions.
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Numerical Studies and Revisit Motivated Example

Active learning performance (Perdikaris)

@ Perdikaris function (1-dim).

@ Compare three proposed strategies ALD, ALM, ALC, and ALMC, with

@ a cokriging-based sequential design (CoKriging-CV) (Le Gratiet and
Cannamela, 2015)

@ a sequential design maximizing the rate of stepwise uncertainty
reduction using the AR model (MR-SUR) (Stroh et al., 2022)
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Numerical Studies and Revisit Motivated Example

Active learning performance (Perdikaris)

@ Perdikaris function (1-dim).

Compare three proposed strategies ALD, ALM, ALC, and ALMC, with

@ a cokriging-based sequential design (CoKriging-CV) (Le Gratiet and
Cannamela, 2015)

@ a sequential design maximizing the rate of stepwise uncertainty
reduction using the AR model (MR-SUR) (Stroh et al., 2022)

@ Simulation costs of low- and high-fidelity simulators are C; = 1 and
G=3

Total simulation budget of Gyt = 80.

10 repetitions with different initial designs.
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Numerical Studies and Revisit Motivated Example

Active learning performance (Perdikaris)

06 04
03 =
04 Ty
& &
2 g 02
& S

40 50 60 70 80
Costs Costs
ALD —: ALC - - Cokriging-CV

Strate!
v ALM = ALMC MR-SUR

RMSE and CRPS for the Perdikaris function with respect to the simulation cost.
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Numerical Studies and Revisit Motivated Example

Active learning performance (Perdikaris)
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ALD
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ALC
ALMC
Cokriging-CV
MR-SUR -
ALD
ALM
ALC
ALMC
Cokriging—-CV -
MR-SUR

Final RMSE (left) and proportion of AL acquisitions choosing low-fidelity data
(right).
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Numerical Studies and Revisit Motivated Example

Revisit motivated example

Ay,
2O
44?,14’4'4"‘“) 5}

A )

Low-fidelity (left) and high-fidelity (right) simulations at x = (0.5, 0.45).

@ Input: x = (x1, x2) = (pressure, suction) € Q = [0.25,0.75]?

@ Output: f(x): maximum of the thermal stress profile
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Numerical Studies and Revisit Motivated Example

Revisit motivated example

@ Perform the finite element simulations with n; = 20 and ny, = 10.

@ The simulation time of the finite element simulations, which are
respectively C; = 2.25 and C; = 6.85 (seconds) will be used for
active learning.
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Numerical Studies and Revisit Motivated Example

Revisit motivated example

@ Perform the finite element simulations with n; = 20 and ny, = 10.

@ The simulation time of the finite element simulations, which are
respectively C; = 2.25 and C; = 6.85 (seconds) will be used for
active learning.

@ 10 repetitions with nyegy = 100 random test input locations generated
by a space-filling design.

@ We perform finite element simulations using the Partial Differential
Equation Toolbox in MATLAB.
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Numerical Studies and Revisit Motivated Example

Blade: Emulation performance
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RMSE, CRPS, and computation time across 10 repetitions in the turbine blade

application.
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Numerical Studies and Revisit Motivated Example

Blade: Active learning performance

20

40 25
2
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120 130 140 150 120 130 140 150
Costs Costs
ALD —: ALC - - Cokriging-CV
- ALM = ALMC MR-SUR

Strategy

RMSE and CRPS for the Park function with respect to the cost.
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Numerical Studies and Revisit Motivated Example

Blade: Active learning performance
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Final RMSE (left) and proportion of AL acquisitions choosing low-fidelity data
(right).

Junoh Heo and Chih-Li Sung (MSU) Active learning for RNA emulator



Conclusion

Conclusion

@ We propose a new model (RNA emulator) and three corresponding
active learning strategies (ALD, ALM, ALC, and ALMC).
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Conclusion

Conclusion

@ We propose a new model (RNA emulator) and three corresponding
active learning strategies (ALD, ALM, ALC, and ALMC).

@ RNA emulator provides the closed-form expressions for both the
posterior mean and variance under common kernel choices.

@ Active learnings are facilitated by these closed form expressions.

@ Numerical studies and real application show the effectiveness of our
approach.

@ R package RNAmf is available on CRAN (Heo and Sung, 2024).
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R package (CRAN)

RNAmf: Recursive Non-Additive Emulator for Multi-Fidelity Data

Performs RNA emulation and active learning proposed by Heo and Sung (2023+) <doi:10.48550/arXiv.2309.11772> for multi-fidelity computer
experiments. The RNA emulator is particularly useful when the simulations with different fidelity level are nonlinearly correlated. The
hyperparameters in the model are estimated by maximum likelihood estimation.

Version: 0.12

Imports: plgp, stats, Ihs, doParallel, foreach
Suggests: knitr, rmarkdown

Published: 2024-03-22

DOL: 10.32614/CRAN .package RNAmf
Author: Junoh Heo [aut, cre], Chih-Li Sung [aut]
Maintainer: Junoh Heo <heojunoh at msu.edu>
License: MIT + file LICENSE

NeedsCompilation: no
CRAN checks: RNAmf results

Documentation:
Reference manual: RNAmf pdf
Downloads:

Package source: RNAmf 0.1.2.targz
‘Windows binaries: r-devel: RNAmf 0.1.2.zip, r-release: RNAmf 0.1.2 zip, r-oldrel: RNAmf 0.1.2.zip

macOS binaries: r-release (arm64): RNAmf 0.1.2.tgz, r-oldrel (arm64): RNAmf 0.1.2.tgz, r-release (x86_64): RNAmf 0.1.2.tgz, r-oldrel
(x86_64): RNAmf 0.1.2.tgz
Old sources: RNAmf archive
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Reproducibility

[0 README V4

Active Learning for a Recursive Non-Additive Emulator
for Multi-Fidelity Computer Experiments
(Reproducibility)

Junoh Heo, Chih-Li Sung Jun 3, 2024

This instruction aims to reproduce the results in the paper "Active Learning for a Recursive Non-Additive Emulator
for Multi-Fidelity Computer Experiments".

The following results are reproduced in this file

« Section 5.1: Figures 7, S14, and 8
« Section 5.2: Figures 9, 10, S15, and S16
« Section 6: Figure 11, 12 and 13

The approximate running times for each section are as follows:

« Section 5.1: ~9 hours
« Section 5.2: ~48 hours
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