

Stacking designs: designing multi-fidelity computer experiments with target predictive accuracy

Chih-Li Sung

Department of Statistics and Probability Michigan State University

Joint work with Wenjia Wang (HKUST(GZ)), Yi Ji, Tao Tang, and Dr. Simon Mak (Duke)

UMass Amherst, April 17, 2024

Outline

1 Introduction

- Multi-fidelity data
- Finite Element Simulations

Stacking Design

- ML Interpolator
- Error Analysis
- Stacking design with target predictive accuracy

3 Real Application

4 Cost Complexity Theorem

Conclusion

- Computer models have been widely adopted to understand a real-world feature, phenomenon or event.
- Computer simulations are used to solve these models (e.g., finite element / finite difference) .

- Computer models have been widely adopted to understand a real-world feature, phenomenon or event.
- Computer simulations are used to solve these models (e.g., finite element / finite difference) .
- The simulation can be either
 - High-fidelity simulation: costly but close to the truth

- Computer models have been widely adopted to understand a real-world feature, phenomenon or event.
- Computer simulations are used to solve these models (e.g., finite element / finite difference) .
- The simulation can be either
 - High-fidelity simulation: costly but close to the truth
 - Low-fidelity simulation: cheaper but less accurate

- Computer models have been widely adopted to understand a real-world feature, phenomenon or event.
- Computer simulations are used to solve these models (e.g., finite element / finite difference) .
- The simulation can be either
 - High-fidelity simulation: costly but close to the truth
 - Low-fidelity simulation: cheaper but less accurate
 - (intermediate-fidelity simulation)

Motivated Example: Finite Element Simulations

- Thermal stress of jet engine turbine blade can be analyzed through a static structural computer model.
- The model can be *numerically* solved via finite element method.

Motivated Example: Finite Element Simulations

- Thermal stress of jet engine turbine blade can be analyzed through a static structural computer model.
- The model can be *numerically* solved via finite element method.
- Input: $\mathbf{x} = (x_1, x_2) = (\text{pressure}, \text{suction})$

Motivated Example: Finite Element Simulations

- Thermal stress of jet engine turbine blade can be analyzed through a static structural computer model.
- The model can be *numerically* solved via finite element method.
- Input: $\mathbf{x} = (x_1, x_2) = (\text{pressure}, \text{suction})$
- **Output**: $f(\mathbf{x})$: average of thermal stress

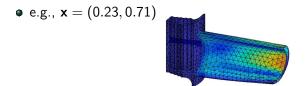
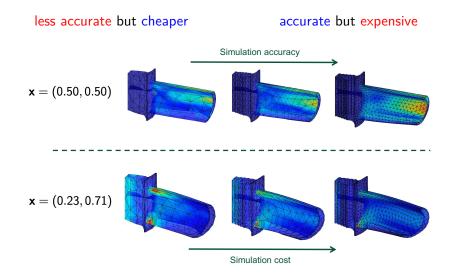


Figure: average of thermal stress f(0.23, 0.71) = 10.5

Multi-Fidelity Simulations via Mesh Configuration



Statistical Emulation

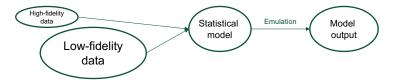
• Can we leverage both low- and high-fidelity simulations in order to

Statistical Emulation

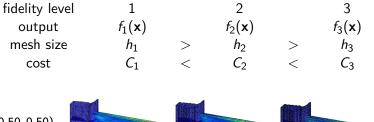
- Can we leverage both low- and high-fidelity simulations in order to
 - maximize the accuracy of model predictions,
 - while minimizing the cost associated with the simulations?

Statistical Emulation

- Can we leverage both low- and high-fidelity simulations in order to
 - maximize the accuracy of model predictions,
 - while minimizing the cost associated with the simulations?
 - A cheaper statistical model emulating the model output based on the simulations with multiple fidelities
 - Often called emulator or surrogate model



Notation



$$\mathbf{x} = (0.50, 0.50)$$

Existing Methods

- Modeling:
 - Co-kriging (Kennedy and O'Hagan, 2000, and many others)

$$f_l(\mathbf{x}) = \rho_{l-1}f_{l-1}(\mathbf{x}) + Z_{l-1}(\mathbf{x}), \quad l = 2, ..., L$$

where both $f_{l-1}(\mathbf{x})$ and $Z_{l-1}(\mathbf{x})$ have Gaussian Process (GP) priors.

Existing Methods

- Modeling:
 - Co-kriging (Kennedy and O'Hagan, 2000, and many others)

$$f_l(\mathbf{x}) = \rho_{l-1}f_{l-1}(\mathbf{x}) + Z_{l-1}(\mathbf{x}), \quad l = 2, ..., L$$

where both $f_{l-1}(\mathbf{x})$ and $Z_{l-1}(\mathbf{x})$ have Gaussian Process (GP) priors.

• Non-stationary GP (Tuo, Wu and Yu, 2014): emulate $f_\infty({f x})$ as $h_\infty o 0$

Existing Methods

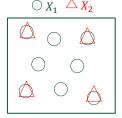
- Modeling:
 - Co-kriging (Kennedy and O'Hagan, 2000, and many others)

$$f_l(\mathbf{x}) = \rho_{l-1}f_{l-1}(\mathbf{x}) + Z_{l-1}(\mathbf{x}), \quad l = 2, ..., L$$

where both $f_{l-1}(\mathbf{x})$ and $Z_{l-1}(\mathbf{x})$ have Gaussian Process (GP) priors.

- Non-stationary GP (Tuo, Wu and Yu, 2014): emulate $f_\infty({f x})$ as $h_\infty o 0$
- Experimental Design: Nested space-filling design (Qian, Ai, and Wu, 2009, and many others)

$$X_L \subseteq X_{L-1} \subseteq \cdots \subseteq X_1$$



• Q1: Sample size of each level?

- Q1: Sample size of each level?
- Q2: How many fidelity levels?

- Q1: Sample size of each level?
- Q2: How many fidelity levels?
- Q3: Mesh size/density specification?

- Q1: Sample size of each level?
- Q2: How many fidelity levels?
- Q3: Mesh size/density specification?
- Q4: Is it better than single-fidelity simulation?

• Goal: Emulate $f_{\infty}(\mathbf{x})$

- Goal: Emulate $f_{\infty}(\mathbf{x})$
- Idea: with $f_0(\mathbf{x}) = 0$

 $f_L(\mathbf{x}) = (f_1(\mathbf{x}) - f_0(\mathbf{x})) + (f_2(\mathbf{x}) - f_1(\mathbf{x})) + \dots + (f_L(\mathbf{x}) - f_{L-1}(\mathbf{x}))$

• Assume the data is nested $X_L \subseteq X_{L-1} \subseteq \cdots \subseteq X_1$

• Denote the difference $Z(X_l) = f_l(X_l) - f_{l-1}(X_l)$ at nested sites X_l

- Denote the difference $Z(X_l) = f_l(X_l) f_{l-1}(X_l)$ at nested sites X_l
- The reproducing kernel Hilbert space (RKHS) interpolator for each $(f_l(\mathbf{x}) f_{l-1}(\mathbf{x}))$ is

$$\hat{Z}_l(\mathbf{x}) = \Phi_l(\mathbf{x}, X_l) \Phi_l(X_l, X_l)^{-1} Z(X_l),$$

where Φ_I is a positive definite kernel function.

- Denote the difference $Z(X_l) = f_l(X_l) f_{l-1}(X_l)$ at nested sites X_l
- The reproducing kernel Hilbert space (RKHS) interpolator for each $(f_l(\mathbf{x}) f_{l-1}(\mathbf{x}))$ is

$$\hat{Z}_I(\mathbf{x}) = \Phi_I(\mathbf{x}, X_I) \Phi_I(X_I, X_I)^{-1} Z(X_I),$$

where Φ_I is a positive definite kernel function.

• ML Interpolator:

$$\hat{f}_L(\mathbf{x}) = \hat{Z}_1(\mathbf{x}) + \hat{Z}_2(\mathbf{x}) + \cdots + \hat{Z}_L(\mathbf{x}).$$

Matérn kernel

Assumption: Matérn kernel Φ

$$\Phi_{I}(\mathbf{x},\mathbf{x}') = \phi_{I}(\|\theta_{I} \odot (\mathbf{x} - \mathbf{x}')\|_{2})$$

with

$$\phi_l(\mathbf{r}) = \frac{\sigma_l^2}{\Gamma(\nu_l)2^{\nu_l-1}} (2\sqrt{\nu_l}\mathbf{r})_l^{\nu} B_{\nu_l}(2\sqrt{\nu_l}\mathbf{r}),$$

- ν_l : smoothness parameter
- θ_I : lengthscale parameter
- σ_I^2 : scalar parameter
- B_{ν} : the modified Bessel function of the second kind

Matérn kernel

Assumption: Matérn kernel Φ

$$\Phi_{I}(\mathbf{x},\mathbf{x}') = \phi_{I}(\|\theta_{I} \odot (\mathbf{x} - \mathbf{x}')\|_{2})$$

with

$$\phi_l(\mathbf{r}) = \frac{\sigma_l^2}{\Gamma(\nu_l)2^{\nu_l-1}} (2\sqrt{\nu_l}\mathbf{r})_l^{\nu} B_{\nu_l}(2\sqrt{\nu_l}\mathbf{r}),$$

- ν_l : smoothness parameter
- θ_I : lengthscale parameter
- σ_I^2 : scalar parameter
- B_{ν} : the modified Bessel function of the second kind
- Parameters can be estimated via either CV or MLE (by a GP assumption)

Note of ML Interpolator

Alternatively, one can assume Z_l(x) follows a Gaussian process (GP) prior.

Note of ML Interpolator

- Alternatively, one can assume Z_l(x) follows a Gaussian process (GP) prior.
- The posterior mean is equivalent to the ML Interpolator $\hat{f}_L(\mathbf{x})$.
- \bullet Can be viewed as a special case of Kennedy and O'Hagan (2000) model ($\rho_{\rm I}=1)$

Error Analysis of ML Interpolator

- ML Interpolator $\hat{f}_L(\mathbf{x}) = \hat{Z}_1(\mathbf{x}) + \hat{Z}_2(\mathbf{x}) + \cdots + \hat{Z}_L(\mathbf{x})$
- Recall our goal is to emulate $f_{\infty}(\mathbf{x})$

Error Analysis of ML Interpolator

- ML Interpolator $\hat{f}_L(\mathbf{x}) = \hat{Z}_1(\mathbf{x}) + \hat{Z}_2(\mathbf{x}) + \cdots + \hat{Z}_L(\mathbf{x})$
- Recall our goal is to emulate $f_\infty(\mathbf{x})$

$$|f_{\infty}(\mathbf{x}) - \hat{f}_{L}(\mathbf{x})| \leq \underbrace{|f_{\infty}(\mathbf{x}) - f_{L}(\mathbf{x})|}_{\text{simulation error}} + \underbrace{|f_{L}(\mathbf{x}) - \hat{f}_{L}(\mathbf{x})|}_{\text{emulation error}}.$$

Error Analysis

Idea of Stacking Design

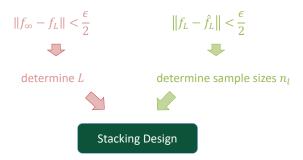
• Given a desired accuracy $\epsilon > 0$

Idea of Stacking Design

- Given a desired accuracy $\epsilon > 0$
- We wish $\|f_{\infty} \hat{f}_L\| < \epsilon$ (i.e., with target predictive accuracy!)

Idea of Stacking Design

- Given a desired accuracy $\epsilon > 0$
- We wish $\|f_{\infty} \hat{f}_L\| < \epsilon$ (i.e., with target predictive accuracy!)



Error Analysis

Control emulation error $\|f_L - \hat{f}_L\|$

Proposition 1: Emulation error

Suppose that

- the input space is *d*-dimensional and is bounded and convex,
- X_l is quasi-uniform with sample size n_l ,

Then,

$$|f_L(\mathbf{x}) - \hat{f}_L(\mathbf{x})| \le c \sum_{l=1}^L \|\theta_l\|_2^{\nu_l} n_l^{-\nu_l/d} \|f_l - f_{l-1}\|_{\mathcal{N}_{\Phi_l}(\Omega)},$$

where $\|\cdot\|\|_{\mathcal{N}_{\Phi_{\ell}}(\Omega)}$ is the RKHS norm.

Error Analysis

Control emulation error $\|f_L - \hat{f}_L\|$

Proposition 1: Emulation error

Suppose that

- the input space is *d*-dimensional and is bounded and convex,
- X_l is quasi-uniform with sample size n_l ,

Then,

$$|f_L(\mathbf{x}) - \hat{f}_L(\mathbf{x})| \le c \sum_{l=1}^L \|\theta_l\|_2^{\nu_l} n_l^{-\nu_l/d} \|f_l - f_{l-1}\|_{\mathcal{N}_{\Phi_l}(\Omega)},$$

where $\|\cdot\|\|_{\mathcal{N}_{\Phi_{\ell}}(\Omega)}$ is the RKHS norm.

- Denote $q_X = \min_{1 \le j \ne k \le n} \|\mathbf{x}_j \mathbf{x}_k\|/2$ and $h_{X,\Omega}$ as the fill distance.
- A design X_n satisfying h_{X,Ω}/q_X ≤ C for some constant C is called a quasi-uniform design.

• Sample size *n_l* can be determined by minimizing the error bound and the total cost by the method of Lagrange multipliers

$$\sum_{l=1}^{L} \|\theta_{l}\|_{2}^{\nu_{\min}} n_{l}^{-\nu_{\min}/d} \|f_{l} - f_{l-1}\|_{\mathcal{N}_{\Phi_{l}}(\Omega)} + \lambda \sum_{l=1}^{L} n_{l} C_{l},$$

where $\nu_{\min} = \min_{I=1,...,L} \nu_I$, which gives

• Sample size *n_l* can be determined by minimizing the error bound and the total cost by the method of Lagrange multipliers

$$\sum_{l=1}^{L} \|\theta_{l}\|_{2}^{\nu_{\min}} n_{l}^{-\nu_{\min}/d} \|f_{l} - f_{l-1}\|_{\mathcal{N}_{\Phi_{l}}(\Omega)} + \lambda \sum_{l=1}^{L} n_{l} C_{l},$$

where $\nu_{\min} = \min_{I=1,...,L} \nu_I$, which gives

$$n_{l} = \mu \left(\frac{\|\theta_{l}\|^{\nu_{\min}}}{C_{l}} \|f_{l} - f_{l-1}\|_{\mathcal{N}_{\Phi_{l}}(\Omega)} \right)^{d/(\nu_{\min}+d)}$$

for some constant $\mu > 0$.

• Sample size *n_l* can be determined by minimizing the error bound and the total cost by the method of Lagrange multipliers

$$\sum_{l=1}^{L} \|\theta_{l}\|_{2}^{\nu_{\min}} n_{l}^{-\nu_{\min}/d} \|f_{l} - f_{l-1}\|_{\mathcal{N}_{\Phi_{l}}(\Omega)} + \lambda \sum_{l=1}^{L} n_{l} C_{l},$$

where $\nu_{\min} = \min_{I=1,...,L} \nu_I$, which gives

$$n_{l} = \mu \left(\frac{\|\theta_{l}\|^{\nu_{\min}}}{C_{l}} \|f_{l} - f_{l-1}\|_{\mathcal{N}_{\Phi_{l}}(\Omega)} \right)^{d/(\nu_{\min} + d)}$$

for some constant $\mu > 0$.

• Find μ such that $\|f_L - \hat{f}_L\| < \epsilon/2$

$$\|f_L - \hat{f}_L\| < \sum_{l=1}^L \|P_l\| \|f_l - f_{l-1}\|_{\mathcal{N}_{\Phi_l(\Omega)}} < \epsilon/2$$

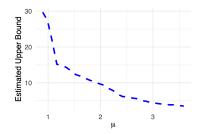
- $P_l(\mathbf{x})$ is a power function
- $\|f_l f_{l-1}\|_{\mathcal{N}_{\Phi_l(\Omega)}}$ can be estimated by $\|\hat{Z}_l\|_{\mathcal{N}_{\Phi_l(\Omega)}}$

Error Analysis

Sample size determination n_l

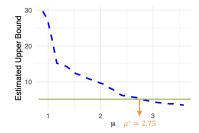
$$\|f_L - \hat{f}_L\| < \sum_{l=1}^L \|P_l\| \|f_l - f_{l-1}\|_{\mathcal{N}_{\Phi_l(\Omega)}} < \epsilon/2$$

- $P_l(\mathbf{x})$ is a power function
- $\|f_l f_{l-1}\|_{\mathcal{N}_{\Phi_l(\Omega)}}$ can be estimated by $\|\hat{Z}_l\|_{\mathcal{N}_{\Phi_l(\Omega)}}$



$$\|f_L - \hat{f}_L\| < \sum_{l=1}^L \|P_l\| \|f_l - f_{l-1}\|_{\mathcal{N}_{\Phi_l(\Omega)}} < \epsilon/2$$

- $P_l(\mathbf{x})$ is a power function
- $\|f_l f_{l-1}\|_{\mathcal{N}_{\Phi_l(\Omega)}}$ can be estimated by $\|\hat{Z}_l\|_{\mathcal{N}_{\Phi_l(\Omega)}}$



Questions

- Q1: Sample size of each level? n_l
- Q2: How many fidelity levels?
- Q3: Mesh size/density specification?
- Q4: Is it better than single-fidelity simulation?

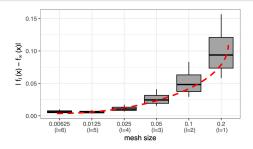
Control simulation error $\|f_{\infty} - f_L\|$

Error Rate of finite element simulations

(Brenner and Scott, 2007, Tuo, Wu and Yu, 2014) Under some regularity conditions, for a constant $\alpha \in \mathbb{N}$,

$$|f_{\infty}(\mathbf{x}) - f_L(\mathbf{x})| < c(\mathbf{x})h_L^{\alpha}.$$

Recall h_L is the mesh size.



• Let $h_l = h_0 2^{-l}$ where $h_0/2$ is the mesh size of the lowest fidelity simulator $f_1(\mathbf{x})$.

- Let $h_l = h_0 2^{-l}$ where $h_0/2$ is the mesh size of the lowest fidelity simulator $f_1(\mathbf{x})$.
- Suppose $|f_{\infty}(\mathbf{x}) f_L(\mathbf{x})| = c_1(\mathbf{x})h_L^{\alpha} + O(h_L^{\alpha+1})$

- Let $h_l = h_0 2^{-l}$ where $h_0/2$ is the mesh size of the lowest fidelity simulator $f_1(\mathbf{x})$.
- Suppose $|f_{\infty}(\mathbf{x}) f_L(\mathbf{x})| = c_1(\mathbf{x})h_L^{\alpha} + O(h_L^{\alpha+1})$
- One can show that

$$\|f_{\infty} - f_L\| = \frac{\|f_L - f_{L-1}\|}{2^{\alpha} - 1},$$

assuming that the terms of order $h_L^{\alpha+1}$ and higher can be neglected.

• $||f_L - f_{L-1}||$ can be approximated by $||\hat{Z}_L||$.

- Let $h_l = h_0 2^{-l}$ where $h_0/2$ is the mesh size of the lowest fidelity simulator $f_1(\mathbf{x})$.
- Suppose $|f_{\infty}(\mathbf{x}) f_L(\mathbf{x})| = c_1(\mathbf{x})h_L^{\alpha} + O(h_L^{\alpha+1})$
- One can show that

$$\|f_{\infty} - f_L\| = \frac{\|f_L - f_{L-1}\|}{2^{\alpha} - 1},$$

assuming that the terms of order $h_L^{\alpha+1}$ and higher can be neglected.

- $||f_L f_{L-1}||$ can be approximated by $||\hat{Z}_L||$.
- Find *L* that ensures $\frac{\|\hat{Z}_L\|}{2^{\alpha}-1} \leq \epsilon/2$

Determination of $\boldsymbol{\alpha}$

 $\bullet\,$ Tuo, Wu and Yu (2014) determines α according to the quantity of interest

Determination of $\boldsymbol{\alpha}$

- $\bullet\,$ Tuo, Wu and Yu (2014) determines α according to the quantity of interest
- Alternatively, it can be determined by collected data (can be done only when $L \ge 3$) (details omitted)

$$\hat{\alpha} = \frac{1}{L-2} \sum_{l=3}^{L} \sum_{\mathbf{x} \in X_l} \frac{\log\left(\left|\frac{f_{l-1}(\mathbf{x}) - f_{l-2}(\mathbf{x})}{f_l(\mathbf{x}) - f_{l-1}(\mathbf{x})}\right|\right)}{n_l \log 2}.$$

Questions

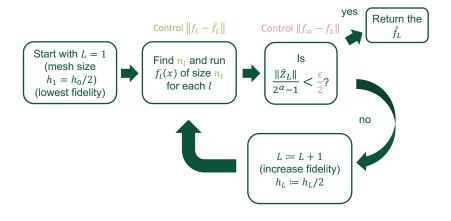
- Q1: Sample size of each level? n_l
- Q2: How many fidelity levels? L
- Q3: Mesh size/density specification? $h_l = h_0 2^{-l}$
- Q4: Is it better than single-fidelity simulation?

Stacking design with error upper bound ϵ

• Idea: Start with low-fidelity simulations and sequentially increase the fidelity level until $\frac{\|\hat{Z}_{l}\|}{2^{\alpha}-1} \leq \epsilon/2$.

Stacking design with error upper bound ϵ

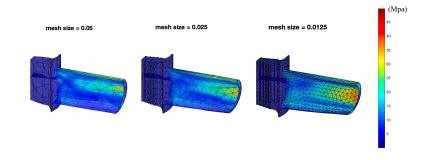
• Idea: Start with low-fidelity simulations and sequentially increase the fidelity level until $\frac{\|\hat{Z}_{L}\|}{2^{\alpha}-1} \leq \epsilon/2$.



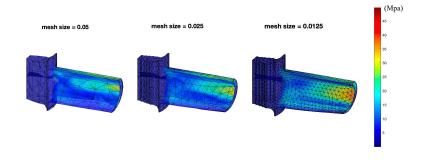
Prediction Uncertainty

• An approximated pointwise error interval of $f_{\infty}(\mathbf{x})$ can be constructed as

$$\hat{f}_L(\mathbf{x}) \pm \left(\frac{|\hat{Z}_L(\mathbf{x})|}{2^{\alpha}-1} + \sum_{l=1}^{L} P_l(\mathbf{x}) (Z_l(X_l)^T \Phi_l(X_l, X_l)^{-1} Z_l(X_l))^{1/2} \right).$$



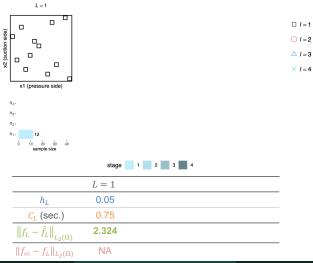
- Input: $\mathbf{x} = (x_1, x_2) = (\text{pressure}, \text{suction})$
- Output: $f(\mathbf{x})$: average of thermal stress



- Input: $\mathbf{x} = (x_1, x_2) = (\text{pressure, suction})$
- **Output**: $f(\mathbf{x})$: average of thermal stress
- Test data: Simulations with mesh size $h \approx 0$ at 20 uniform test input locations are conducted to examine the performance

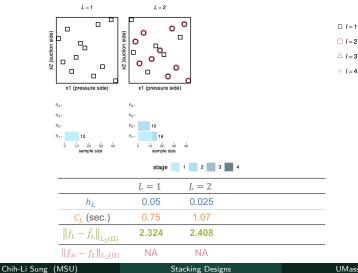
• We wish
$$\|f_{\infty} - \hat{f}_L\|_{L_2(\Omega)} < \epsilon = 5$$

• We wish
$$\|f_{\infty} - \hat{f}_L\|_{L_2(\Omega)} < \epsilon = 5$$

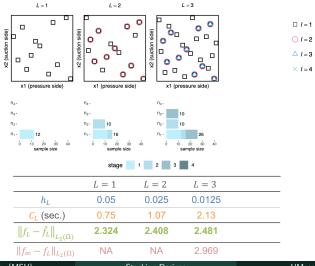


Chih-Li Sung (MSU)

• We wish $\|f_{\infty} - \hat{f}_L\|_{L_2(\Omega)} < \epsilon = 5$



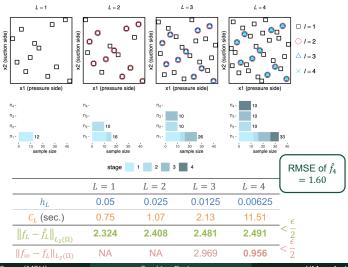
• We wish $\|f_{\infty} - \hat{f}_L\|_{L_2(\Omega)} < \epsilon = 5$



Chih-Li Sung (MSU)

Stacking Designs

• We wish $\|f_{\infty} - \hat{f}_L\|_{L_2(\Omega)} < \epsilon = 5$



Chih-Li Sung (MSU)

Visualize $\hat{f}_L(\mathbf{x})$

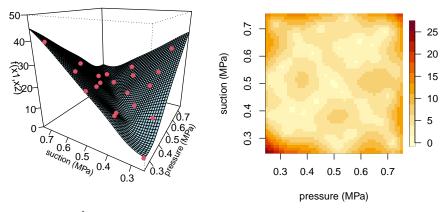


Figure: (left) $\hat{f}_4(\mathbf{x})$ and true test points (red dots); (right) pointwise error bounds

Cost complexity theorem

Theorem

Suppose that

- $\nu := \nu_1 = \cdots = \nu_L$
- $|f_{\infty}(\mathbf{x}) f_{l}(\mathbf{x})| < c_{1}2^{-\alpha l}$
- $C_l < c_2 2^{\beta l}$

Cost complexity theorem

Theorem

Suppose that

•
$$\nu := \nu_1 = \cdots = \nu_L$$

•
$$|f_{\infty}(\mathbf{x}) - f_l(\mathbf{x})| < c_1 2^{-\alpha l}$$

•
$$C_l < c_2 2^{\beta_l}$$

Under some regularity conditions, it follows that

$$|f_{\infty}(\mathbf{x}) - \hat{f}_L(\mathbf{x})| < \epsilon,$$

with a total computational cost $\mathcal{C}_{\rm tot}$ bounded by

$$C_{\text{tot}} \leq \begin{cases} c_3 \epsilon^{-\frac{d}{\nu}}, & \frac{\alpha}{\beta} > \frac{2\nu}{d}, \\ c_3 \epsilon^{-\frac{d}{\nu}} |\log \epsilon|^{1+\frac{d}{\nu}}, & \frac{\alpha}{\beta} = \frac{2\nu}{d}, \\ c_3 \epsilon^{-\frac{d}{\nu} - \frac{2\beta\nu - \alpha d}{2\alpha(\nu+d)}}, & \frac{\alpha}{\beta} < \frac{2\nu}{d}. \end{cases}$$

Chih-Li Sung (MSU)

• When $\frac{\alpha}{\beta} > \frac{2\nu}{d}$, the budget $C_{\rm tot}$ is expended on coarser mesh

- When $\frac{\alpha}{\beta} > \frac{2\nu}{d}$, the budget $C_{\rm tot}$ is expended on coarser mesh
- When $\frac{\alpha}{\beta} < \frac{2\nu}{d}$, the budget $C_{\rm tot}$ is expended on denser mesh

- When $\frac{\alpha}{\beta} > \frac{2\nu}{d}$, the budget $C_{\rm tot}$ is expended on coarser mesh
- When $\frac{\alpha}{\beta} < \frac{2\nu}{d}$, the budget $C_{\rm tot}$ is expended on denser mesh
- When $\frac{\alpha}{\beta} = \frac{2\nu}{d}$, evenly spread

- When $\frac{\alpha}{\beta} > \frac{2\nu}{d}$, the budget $C_{\rm tot}$ is expended on coarser mesh
- When $\frac{\alpha}{\beta} < \frac{2\nu}{d}$, the budget $C_{\rm tot}$ is expended on denser mesh
- When $\frac{\alpha}{\beta} = \frac{2\nu}{d}$, evenly spread

$\frac{\alpha}{\beta}$	$\frac{2\nu}{d}$
simulation error reduction	the rate of convergence of
over the rate computational	RKHS interpolator as
cost as fidelity increases	sample size increases

Single-fidelity vs Multi-fidelity

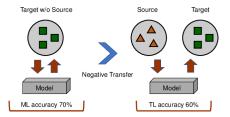
• What if all the budget is expanded on single fidelity simulations?

Single-fidelity vs Multi-fidelity

- What if all the budget is expanded on single fidelity simulations?
- Independent kriging vs co-kriging?

Single-fidelity vs Multi-fidelity

- What if all the budget is expanded on single fidelity simulations?
- Independent kriging vs co-kriging?
- Negative transfer?



Zhang et al. (2021) A Survey on Negative Transfer. IEEE Transactions on Neural Networks and Learning Systems

Complexity of single-fidelity interpolator

Corollary

• Let $\hat{f}_H(x)$ be the RKHS interpolator based on single-fidelity data $(X_H, f_H(X_H))$

Complexity of single-fidelity interpolator

Corollary

- Let $\hat{f}_H(x)$ be the RKHS interpolator based on single-fidelity data $(X_H, f_H(X_H))$
- Suppose that $(\epsilon/2)^{1+\frac{lpha d}{2
 ueta}} \leq c_1 h_H^{lpha} \leq \epsilon/2$, where $c_1 = \sup_{\mathbf{x}\in\Omega} c_1(\mathbf{x})$

Complexity of single-fidelity interpolator

Corollary

- Let $\hat{f}_H(x)$ be the RKHS interpolator based on single-fidelity data $(X_H, f_H(X_H))$
- Suppose that $(\epsilon/2)^{1+\frac{lpha d}{2
 ueta}} \leq c_1 h_H^{lpha} \leq \epsilon/2$, where $c_1 = \sup_{\mathbf{x}\in\Omega} c_1(\mathbf{x})$

Under some regularity conditions, it follows that

$$|f_{\infty}(\mathbf{x}) - \hat{f}_{H}(\mathbf{x})| < \epsilon,$$

with a total computational cost C_H bounded by

$$C_H \leq c_h \epsilon^{-\frac{\beta}{\alpha} - \frac{d}{2\nu}}.$$

• When $\frac{\alpha}{\beta} < \frac{2\nu}{d} \Rightarrow$ ML interpolator has a slower cost rate

- When $\frac{\alpha}{\beta} < \frac{2\nu}{d} \Rightarrow$ ML interpolator has a slower cost rate
- When $\frac{\alpha}{\beta} \geq \frac{2\nu}{d} \Rightarrow$ Single-fidelity RKHS interpolator has a slower cost rate

- When $\frac{\alpha}{\beta} < \frac{2\nu}{d} \Rightarrow$ ML interpolator has a slower cost rate
- When $\frac{\alpha}{\beta} \geq \frac{2\nu}{d} \Rightarrow$ Single-fidelity RKHS interpolator has a slower cost rate
- Example 1: β is small and α is large

- When $\frac{\alpha}{\beta} < \frac{2\nu}{d} \Rightarrow$ ML interpolator has a slower cost rate
- When $\frac{\alpha}{\beta} \geq \frac{2\nu}{d} \Rightarrow$ Single-fidelity RKHS interpolator has a slower cost rate
- Example 1: β is small and α is large

•
$$C_1 = 2.9$$
 and $C_5 = 3$

•
$$|f_{\infty}(\mathbf{x}) - f_{1}(\mathbf{x})| = 10$$
, and $|f_{\infty}(\mathbf{x}) - f_{5}(\mathbf{x})| = 0.001$

- When $\frac{\alpha}{\beta} < \frac{2\nu}{d} \Rightarrow$ ML interpolator has a slower cost rate
- When $\frac{\alpha}{\beta} \geq \frac{2\nu}{d} \Rightarrow$ Single-fidelity RKHS interpolator has a slower cost rate
- Example 1: β is small and α is large

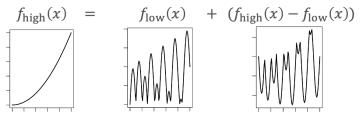
•
$$C_1 = 2.9$$
 and $C_5 = 3$
• $|f_{\infty}(\mathbf{x}) - f_1(\mathbf{x})| = 10$, and $|f_{\infty}(\mathbf{x}) - f_5(\mathbf{x})| = 0.001$

• Example 2: ν is very small (i.e., nonsmooth $(f_l - f_{l-1})$)

- When $\frac{\alpha}{\beta} < \frac{2\nu}{d} \Rightarrow$ ML interpolator has a slower cost rate
- When $\frac{\alpha}{\beta} \geq \frac{2\nu}{d} \Rightarrow$ Single-fidelity RKHS interpolator has a slower cost rate
- Example 1: β is small and α is large

•
$$C_1 = 2.9$$
 and $C_5 = 3$
• $|f_{\infty}(\mathbf{x}) - f_1(\mathbf{x})| = 10$, and $|f_{\infty}(\mathbf{x}) - f_5(\mathbf{x})| = 0.001$

• Example 2: ν is very small (i.e., nonsmooth $(f_l - f_{l-1})$)



Chih-Li Sung (MSU)

Questions

- Q1: Sample size of each level? n_l
- Q2: How many fidelity levels? L
- Q3: Mesh size/density specification? $h_l = h_0 2^{-l}$
- Q4: Is it better than single-fidelity simulation? In some cases, yes

Conclusion

• Stacking design for multi-fidelity simulations with desired accuracy

- Sample determination
- Mesh size determination
- Cost complexity
 - Budget allocation
 - Comparison with single fidelity simulation

Reference

Chih-Li Sung (MSU)

• Sung, C.-L., Ji, Y., Mak, S., Wang, W., & Tang, T. (2024). Stacking Designs: Designing Multifidelity Computer Experiments with Target Predictive Accuracy. *SIAM/ASA Journal on Uncertainty Quantification*, 12(1), 157-181.

Society for Industrial and Applied Montematics	ter Search Terms Q Advanced Search	Register / Sign In Access via your Institution
Journals ~ E-books Bookstore Proceedings For Authors ~ For Librarian	ns Collections ~	JOIN SIAM HELP/CONT/
Journal Home Current Issue All Issues About ~ Submit Subscribe		
Home \rightarrow SIAM/ASA Journal on Uncertainty Quantification \rightarrow Vol. 12, Iss. 1 (2024) \rightarrow 10.1137/22M1532007		
V Previous Article FULL ACCESS	Next Article >	Recommended Content
Stacking Designs: Designing Multifidelity Computer Experiments with Target Predictive Accuracy		Combining Field Data and Computer Simulations for Calibration and Prediction Dave Higdon , Marc Kennedy ,
Authors: Chih-Li Sung 📀 🖼 Yi (Irene) Ji, Simon Mak, Wenjia Wang 📀, and Tao Tang 📋 AUTHORS IN https://doi-org.proxy2.cl.msu.edu/10.1137/22M1532007	FO & AFFILIATIONS	James C. Cavendish , John A. Cafeo , Robert D. Ryne <u>Abstract</u> +
PDF 🔋 SUPPLEMENTARY MATERIALS BIBTICX	▲Tools ""	Multifidelity Monte Carlo Estimation with Adaptive Low-Fidelity Models Benjamin Peherstorfer

Stacking Designs

Thank You!

Thank NSF DMS 2113407 for supporting this work.

