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Introduction Multi-fidelity data

Multi-Fidelity Simulations

@ Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

@ Computer simulations are used to solve these models (e.g., finite
element / finite difference) .
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Introduction Multi-fidelity data

Multi-Fidelity Simulations

@ Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

@ Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

@ The simulation can be either
e High-fidelity simulation: costly but close to the truth
o Low-fidelity simulation: cheaper but less accurate

o (intermediate-fidelity simulation)
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Introduction Finite Element Simulations

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.
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Introduction Finite Element Simulations

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.
@ Input: x = (x1, x2) = (pressure, suction)
@ Output: f(x): average of thermal stress

@ eg., x=(0.23,0.71)

Figure: average of thermal stress f(0.23,0.71) = 10.5
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Introduction Finite Element Simulations

Multi-Fidelity Simulations via Mesh Configuration

less accurate but cheaper accurate but expensive

Simulation accuracy

x = (0.50,0.50) ~ u

s

Simulation cost

x = (0.23,0.71)
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Introduction Finite Element Simulations

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to
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Introduction Finite Element Simulations

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to

@ maximize the accuracy of model predictions,

@ while minimizing the cost associated with the simulations?
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Introduction Finite Element Simulations

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to
@ maximize the accuracy of model predictions,
@ while minimizing the cost associated with the simulations?

@ A cheaper statistical model emulating the model output based on the
simulations with multiple fidelities

e Often called emulator or surrogate model

High-fidelity
data

Low-fidelity
data

Emulation

Statistical
model
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Introduction Finite Element Simulations

Notation

fidelity level 1 2 3
output A(x) H(x) (x)

mesh size hy > ho > h3

cost G < G < G

x = (0.50, 0.50)

Chih-Li Sung (MSU Stacking Designs UMass Amherst
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Introduction Finite Element Simulations

Existing Methods

@ Modeling:
e Co-kriging (Kennedy and O'Hagan, 2000, and many others)

ﬁ(X) :p/,lf/,l(x)—l—Z/,l(x), /:27,L

where both f;_1(x) and Z;_1(x) have Gaussian Process (GP) priors.
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Introduction Finite Element Simulations

Existing Methods

@ Modeling:
e Co-kriging (Kennedy and O'Hagan, 2000, and many others)

ﬁ(X) :p/,lf/,l(x)—l—Z/,l(x), /:27,L
where both f;_1(x) and Z;_1(x) have Gaussian Process (GP) priors.
o Non-stationary GP (Tuo, Wu and Yu, 2014): emulate f,,(x) as hoo — 0

Ox, &%,

o Experimental Design: Nested space-filling @
design (Qian, Ai, and Wu, 2009, and many O @

others) O O
XL CX1C---CX @ O @
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Introduction Finite Element Simulations

Questions

@ Q1: Sample size of each level?
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Introduction Finite Element Simulations

Questions

@ Q1: Sample size of each level?
@ Q2: How many fidelity levels?

@ Q3: Mesh size/density specification?
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Introduction Finite Element Simulations

Questions

@ Q1: Sample size of each level?
@ Q2: How many fidelity levels?
@ Q3: Mesh size/density specification?

@ Q4: Is it better than single-fidelity simulation?
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Goal: Emulate fio(x)
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Goal: Emulate fio(x)

@ Idea: with f(x) =0
fu(x) = (f(x) = fo(x)) + (R(x) = A(x)) + -+ (f(x) = fi-1(x))

@ Assume the datais nested X; C X;_1 C---C Xy
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Denote the difference Z(X;) = fi(X;) — fi—1(X)) at nested sites X;
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Denote the difference Z(X;) = fi(X;) — fi—1(X)) at nested sites X;

@ The reproducing kernel Hilbert space (RKHS) interpolator for each
(fi(x) = fi-1(x)) is

A

Zi(x) = &;(x, X)®(X1, X))t Z(X),

where @, is a positive definite kernel function.
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Stacking Design ML Interpolator

Multi-Level Interpolator

@ Denote the difference Z(X;) = fi(X;) — fi—1(X)) at nested sites X;

@ The reproducing kernel Hilbert space (RKHS) interpolator for each
(fi(x) = fi-1(x)) is

Zi(x) = dy(x, X)) D,(X), X)) 1 Z(X)),

where @, is a positive definite kernel function.

@ ML Interpolator:

11/41
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Stacking Design ML Interpolator

Matérn kernel

Assumption: Matérn kernel ¢

®(x,x") = ¢([|6) © (x — x)]|2)
with

oi(r) = r(VI)2V’_ (2\/>r)l B, (2v/vir),

@ v;: smoothness parameter
@ 0. lengthscale parameter
@ o7: scalar parameter

@ B,: the modified Bessel function of the second kind
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Stacking Design ML Interpolator

Matérn kernel

Assumption: Matérn kernel ¢

®)(x,x') = ¢1(]10) © (x — x')|2)

with

¢i(r) = r(yl)2y,_ (2\/>r)l V/(2fr)

v;: smoothness parameter

0, lengthscale parameter

°
°

@ o7: scalar parameter

@ B,: the modified Bessel function of the second kind
°

Parameters can be estimated via either CV or MLE (by a GP
assumption)
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Stacking Design ML Interpolator

Note of ML Interpolator

@ Alternatively, one can assume Zj(x) follows a Gaussian process (GP)
prior.
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Stacking Design ML Interpolator

Note of ML Interpolator

@ Alternatively, one can assume Zj(x) follows a Gaussian process (GP)
prior.

@ The posterior mean is equivalent to the ML Interpolator ?L(x).

@ Can be viewed as a special case of Kennedy and O’Hagan (2000)
model (p; = 1)
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Stacking Design Error Analysis

Error Analysis of ML Interpolator

@ ML Interpolator f(x) = Zi(x) + Za(X) + - - - + Z1(X)

@ Recall our goal is to emulate £, (x)
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Stacking Design Error Analysis

Error Analysis of ML Interpolator

@ ML Interpolator f(x) = Zi(x) + Za(X) + - - - + Z1(X)

@ Recall our goal is to emulate £, (x)

[foo(x) = FL)| < [foo(x) — fL(x)| + | f(x) — Fu(x)]-

simulation error emulation error
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Stacking Design Error Analysis

Idea of Stacking Design

@ Given a desired accuracy € > 0
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Stacking Design Error Analysis

Idea of Stacking Design

@ Given a desired accuracy € > 0

o We wish ||fy, — || < € (i.e., with target predictive accuracy!)
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Stacking Design Error Analysis

Idea of Stacking Design

@ Given a desired accuracy € > 0

o We wish ||fy, — || < € (i.e., with target predictive accuracy!)

%

Stacking Design
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Stacking Design Error Analysis

Control emulation error ||f; — lA‘LH

Proposition 1: Emulation error

Suppose that
@ the input space is d-dimensional and is bounded and convex,
@ X is quasi-uniform with sample size ny,

Then,

L
() = FL ()l < e SN0l m N = fioalle (@,
=1

where || - |||N¢I(Q) is the RKHS norm.
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Stacking Design Error Analysis

Control emulation error ||f; — lA‘LH

Proposition 1: Emulation error

Suppose that
@ the input space is d-dimensional and is bounded and convex,
@ X is quasi-uniform with sample size ny,

Then,

v, _—v/d
[fu(x) — Fu(x \<cz||0/||2'n, 91— it a2,

where || - |||N¢I(Q) is the RKHS norm.

@ Denote gx = mini<jsi<n|[X; — X«||/2 and hx o as the fill distance.

o A design X, satisfying hx a/qx < C for some constant C is called a
quasi-uniform design.
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Stacking Design Error Analysis

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L L
Vmin ,, —Vmin/d
/z: 164l157 i~ D £y — £t | () + AD G,
=1 =1

where Vmin = min;—1 _; vy, which gives
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Stacking Design Error Analysis

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L
len —Vmin d
E 164112 P16 = fiall g @) + 2D MGy
=1

where Vmin = min;—1 _; vy, which gives
d/(Vmin+d)
= (B i

=M G 1= 11-1lINe, ()

for some constant ;1 > 0.
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Stacking Design Error Analysis

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L
Z 10,15 = min/ 9 £ — fi-1llnve, @) + A> niC,
I=1
where Vmin = min;—1 _; vy, which gives
||9/HV’"'" Hf ., d/(Vmin+d)
( 1= fi-tllne, (@)
for some constant ;1 > 0.

e Find ;i such that ||f, — f|| < €/2
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Stacking Design Error Analysis

Sample size determination n,

L
IfL— fL” < Z HP/”“f/ - f/—]-HNd),(Q) < 6/2
=1

e Pi(x) is a power function

® |[fi — fi-1l| Ny, can be estimated by |’Z”N¢,(Q)
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Stacking Design Error Analysis

Sample size determination n,

L
IfL— fL” < Z HP/”“f/ - f/—]-HNd),(Q) < 6/2
=1

e Pi(x) is a power function

® |[fi — fi-1l| Ny, can be estimated by |’Z”N¢,(Q)

Estimated Upper Bound
I
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Stacking Design Error Analysis

Sample size determination n,

L
1 = Fell < D NP = fimtllng o < €/2

=1

@ Py(x) is a power function

o ||fi— f,_1||N¢/(Q) can be estimated by HZHN‘”/(Q)

30
T \
= \
@
8 20 !
o \
[=%
> \
° ~
L ~
g 10 =
- ~
17] ~ o
w _—
1 2 3
w
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Stacking Design Error Analysis

Questions

@ Q1: Sample size of each level? n;
@ Q2: How many fidelity levels?
@ Q3: Mesh size/density specification?

@ Q4: Is it better than single-fidelity simulation?
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Stacking Design Error Analysis

Control simulation error ||f,, — f/|

Error Rate of finite element simulations

(Brenner and Scott, 2007, Tuo, Wu and Yu, 2014) Under some regularity
conditions, for a constant o € N,

[foo(x) = FL(x)| < c(x)hE-

Recall h; is the mesh size.

0.15 ‘

0.10

1X) = £ ()1
\H]
\

0.00
000625  0.0125 0.025 0.05 . 0.2
(1=6) (1=5) (1=4) (1=3) (1=2) (1=1)
mesh size

UMass Ambherst
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Stacking Design Error Analysis

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).
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Stacking Design Error Analysis

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).

® Suppose |fuo(x) — fi(x)] = c1(x)h{ + O(h ™)
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Stacking Design Error Analysis

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).

@ Suppose |fo(x) — f(x)| = c1(x)h + O(h{*T)
@ One can show that

1L — fLal|

assuming that the terms of order hf“ and higher can be neglected.

o ||fi — fi_1|| can be approximated by || Z;].
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Stacking Design Error Analysis

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).

Suppose |fo(x) — fi(x)| = c1(x)hi + O(h{ ™)

@ One can show that

1L — fLal|

— 1l =
I — i) = P

assuming that the terms of order hf“ and higher can be neglected.

|fi — fi_1]| can be approximated by ||Z;||.

o Find L that ensures 2HZ < €/2
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Stacking Design Error Analysis

Determination of «

@ Tuo, Wu and Yu (2014) determines « according to the quantity of
interest
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Stacking Design Error Analysis

Determination of «

@ Tuo, Wu and Yu (2014) determines « according to the quantity of
interest

@ Alternatively, it can be determined by collected data (can be done
only when L > 3) (details omitted)

fi_1(x)—fi—
o (|7 7 ter 1)

n;log?2
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Stacking Design Error Analysis

Questions

@ Q1: Sample size of each level? n;
@ Q2: How many fidelity levels? L
@ Q3: Mesh size/density specification? h; = ho2~'

@ Q4: Is it better than single-fidelity simulation?

Chih-Li Sung (MSU) Stacking Designs UMass Amherst 24 /41



Stacking Design Stacking design with target predictive accuracy

Stacking design with error upper bound ¢

o ldea: Start with low-fidelity simulations and sequentially increase the

[P
ety < €/2.

fidelity level until
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Stacking Design Stacking design with target predictive accuracy

Stacking design with error upper bound ¢

o ldea: Start with low-fidelity simulations and sequentially increase the
[

fidelity level until ;&5 < ¢€/2.
yes Return the
‘ I
St?ﬁ:’s':\hsfzzl Find 7, and run Is
by = he/2) fi(x) of size | iz <&
L0 for each ( 2a_q

(lowest fidelity)

no

L=L+1
(increase fidelity)
hy = hy/2
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Stacking Design Stacking design with target predictive accuracy

Prediction Uncertainty

@ An approximated pointwise error interval of f,(x) can be constructed

as
L

fi(x) £ (LZQL(_X)1| + P/(X)(Z/(X/)Tq’/(X/,X/)_lzl(Xl))1/2> :
=1
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Real Application

Revisit motivated example

mesh size = 0.05 mesh size = 0.025 mesh size = 0.0125

@ Input: x = (x1, x2) = (pressure, suction)

@ Output: f(x): average of thermal stress
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Real Application

Revisit motivated example

mesh size = 0.05 mesh size = 0.025 mesh size = 0.0125

@ Input: x = (x1, x2) = (pressure, suction)
@ Output: f(x): average of thermal stress

@ Test data: Simulations with mesh size h ~ 0 at 20 uniform test input
locations are conducted to examine the performance
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Real Application

Revisit motivated example

@ We wish ||fo — ?LHLz(Q) <e=5
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Real Application

Revisit motivated example

@ We wish ||fo — ?LHLz(Q) <e=5

L=1

o ]
—_ o o/=1
th
® Ol=2
gl b
] o A=3
¥l B o
* o I=4

[a]

I
sample size

stage 1 2| s«

L=1
hy, 0.05
(sec.)
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Real Application

L=1 L=2
]

o _
| a . o o® 0/=1
2p 2 o c
@ o 2|0 Ol=2
§ (s} gl Ehﬂ
g g
i|lg O g0 Al-3
El [= I Y o _

o o 1=4
o o
X1 (pressure side) X1 (pressure side)

n- n
N3~ N3
ny- np- 10
n- 12 ny- 16

W b % d ]

sample size sample size

stage 1 2| s«

L=1 L=2
hy, 0.05 0.025
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Real Application

Revisit motivated example

L=1 L=2 L=3
O 5] O
o -
N s © 0% ['a 0® o=
gL 2 o [E|_©o o .
c ] 2|0 e o o Ol=2
g o o T |5
g g g
ig O g0 g0 gD Al-3
El o || 9, o || %, g 4
o o B pgo
X1 (pressure side) x1 (pressure side) x1 (pressure side)
ny: Ng- Ny
n. Ny N3 10
ny n. 10 Ny 10
ny 12 ny 16 ny 26
W 2 s do 6 10 20 3 4o 0 1o 2 30 4o
sample size sample size sample size

stage 1 2| s«

L=1 L=2 L=3
hy, 0.05 0.025 0.0125

(sec.)

Chih-Li Su Stacking Designs UMass Ambherst



Real Appli

cation

Revisit motivated example

L=1 L=2 L=3 L=4
=) ] O 5] =]
=] o _
| o . o 0% [o 0| | g% 8% |0
gL 3 o |2 _©o o |8 %o )
B 5|0 B [n] @ | @ a Ol=2
5 a 5 %, 5|9 SHI N
g5 g g(o Y ols ° al2ai-s
AR il g o 2l 0 g 2l @g o
¥ o |y o |¥ og [P @ B
o o o 5 00 _ o 0% _g =4
o o 3" o
X1 (pressure side) x1 (pressure side) x1 (pressure side) X1 (pressure side)
n, n, ng 'S - 10
ny N N3 10 Na- 10
Na- nz- 10 nz- 10 na- 10
ny 12 n, 16 ny 26 ny .33
o 0 o o 2 i o o @ 4o o o s 4
'sample size 'sample size sample size sample size
stage 1 2 sl ¢ RMSE of ﬂ
= 1.60
L=1 L=2 L=3 L=4 |
hy, 0.05 0.025 0.0125 0.00625
(sec.)
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Real Application

Visualize ;(x)

~ k. |

o 7] 25
—~ © _] 20
E o
A 15
5§ ©°
B 10
=} <

[32]

=}

03 04 05 06 07

pressure (MPa)

Figure: (left) f1(x) and true test points (red dots); (right) pointwise error bounds
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Cost Complexity Theorem

Cost complexity theorem

Theorem

Suppose that

QV =1V =-""=V
0 |fio(x) — fi(X)] < 127
e (< C22’BI
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Cost Complexity Theorem

Cost complexity theorem

Theorem

Suppose that

QV =1V ==V
0 |fio(x) — fi(X)] < 127
e (< C22’BI

Under some regularity conditions, it follows that
[foo (%) = F1(x)] <,

with a total computational cost G bounded by

d
—-= 2
c3e v, % > 71/,
_d d
Ctot < CG3€ V||Og€|1+y7 % = %Tyu
_d_26v—oad o _ ou
C3€ ¥ 2o¢(u+d)’ B < E
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Cost Complexity Theorem

Insight on budget allocation

@ When % > %”, the budget Gt is expended on coarser mesh
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Cost Complexity Theorem

Insight on budget allocation

@ When % > d , the budget G is expended on coarser mesh

@ When % < 7, the budget Gt is expended on denser mesh
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Cost Complexity Theorem

Insight on budget allocation

@ When % > %”, the budget Gt is expended on coarser mesh
@ When % < %”, the budget Gt is expended on denser mesh
@ When % = %”, evenly spread
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Cost Complexity Theorem

Insight on budget allocation

@ When % > %”, the budget Gt is expended on coarser mesh
@ When % < %”, the budget Gt is expended on denser mesh
@ When % = %”, evenly spread
a 2v
8 d
simulation error reduction the rate of convergence of
over the rate computational RKHS interpolator as
cost as fidelity increases sample size increases
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

@ What if all the budget is expanded on single fidelity simulations?
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

@ What if all the budget is expanded on single fidelity simulations?

@ Independent kriging vs co-kriging?
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

@ What if all the budget is expanded on single fidelity simulations?

@ Independent kriging vs co-kriging?

o Negative transfer?
Target

Source

Target w/o Source

Negative Transfer
)
l ML accuracy 70% , | TL accuracy 60% '

Zhang et al. (2021) A Survey on Negative Transfer. IEEE
Transactions on Neural Networks and Learning Systems
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Cost Complexity Theorem

Complexity of single-fidelity interpolator

Corollary

o Let 7y(x) be the RKHS interpolator based on single-fidelity data
(Xu, fri(Xn))
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Cost Complexity Theorem

Complexity of single-fidelity interpolator

Corollary

o Let 7y(x) be the RKHS interpolator based on single-fidelity data
(Xu, fri(Xn))

ad
o Suppose that (e/2)' 728 < c1hfy < €/2, where ¢; = sup,cq c1(x)
Under some regularity conditions, it follows that

oo (%) = Tu(x)] <,

with a total computational cost Cy bounded by

_B_4d
Cy < cpe o 2v,
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Cost Complexity Theorem

Single-fidelity vs Multi-fidelity

@ When % < %" = ML interpolator has a slower cost rate
@ When % > %” = Single-fidelity RKHS interpolator has a slower cost
rate

@ Example 1: §is small and « is large
o (;=29and =3
o |fo(x) — fi(x)] = 10, and |fo(x) — f5(x)| = 0.001

@ Example 2: v is very small (i.e., nonsmooth (f; — fi_1))

fhigh(x) = fiow®) + (fhigh(x) = fiow (%))

B e e e T T T T T LI B
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Cost Complexity Theorem

Questions

@ Q1: Sample size of each level? n;
@ Q2: How many fidelity levels? L
@ Q3: Mesh size/density specification? h; = ho2~!

@ Q4: Is it better than single-fidelity simulation? In some cases, yes
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Conclusion

Conclusion

@ Stacking design for multi-fidelity simulations with desired accuracy

e Sample determination
o Mesh size determination

@ Cost complexity

e Budget allocation
@ Comparison with single fidelity simulation
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