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As the coronavirus disease 2019 (COVID-19) has shown profound ef-
fects on public health and the economy worldwide, it becomes crucial to as-
sess the impact on the virus transmission and develop effective strategies to
address the challenge. A new statistical model, derived from the SIR epidemic
model with functional parameters, is proposed to understand the impact of
weather and government interventions on the virus spread in the presence of
asymptomatic infections among eight metropolitan areas in the United States.
The model uses Bayesian inference with Gaussian process priors to study the
functional parameters nonparametrically, and sensitivity analysis is adopted
to investigate the main and interaction effects of these factors. This analysis
reveals several important results, including the potential interaction effects
between weather and government interventions, which shed new light on the
effective strategies for policymakers to mitigate the COVID-19 outbreak.

1. Introduction. As the coronavirus disease 2019 (COVID-19) has already had pro-
found effects on public health and the economy worldwide, how to use statistical approaches
to model and understand the spread of COVID-19 to inform and educate the public about the
virus transmission and develop effective strategies for addressing this challenge has become
crucial. In particular, the understanding of how government interventions and environmental
factors, such as temperature and humidity, affect the virus transmissibility is important yet
unclear. Moreover, an effective strategy to mitigate the outbreak based on the weather condi-
tions is in extreme need for policymakers yet little attention has been paid to the interaction
effect between weather and government interventions. For instance, a natural question for
policymakers is “Should the government implement more restrictions to mitigate the pan-
demic as the weather gets colder?”

Since the COVID-19 outbreak, many studies have investigated the impact of weather and
government interventions, but some challenges remain. Carson et al. (2020), Xu et al. (2020),
Yu (2020) find some evidence that the weather may be associated with the COVID-19 spread,
while Gupta, Pradhan and Maulud (2020), Jamil et al. (2020) find no significant associations.
Most of the studies on the impacts of government interventions on COVID-19 spread show
that government interventions are associated with reduced COVID-19 transmission, for ex-
ample, Cowling et al. (2020), Flaxman et al. (2020), Haldar and Sethi (2020), Haug et al.
(2020). However, most of this work focuses on individual effects of weather and govern-
ment interventions which may lead to misleading results due to potential collinearity issues
(Wilson (2020)). For example, cold weather may increase the risk of disease overall, leading
governments to impose travel restrictions. Further, interaction effects between weather and
government interventions variables cannot be estimated if the effects in these two sets of vari-
ables are estimated separately. Moreover, most of the existing work study the impact without
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accounting for the presence of the persons who are asymptomatic but can nevertheless in-
fect others which is a distinguishing feature of COVID-19 in comparison with previous viral
diseases.

In this paper we employ a nonparametric regression method not only to model the impacts
of weather and government interventions jointly in the presence of asymptomatic infections,
which incorporates an epidemic model that allows us to evaluate the effects on the virus trans-
missibility, but also provide forecasts of future COVID-19 infections. Specifically, a Gaus-
sian process prior (Rasmussen and Williams (2006)) is imposed on the functional parameters
in the susceptible-infectious-removed (SIR) model (Kermack and McKendrick (1927)), and
based on this model, the posterior distribution of the basic reproduction number, which is
used to measure the transmission potential of a disease, will be derived. Both main and inter-
action effects of these factors will be analyzed by sensitivity analysis (Sobol’ (1993)).

Parameter estimation in epidemic models is often called calibration in the computer exper-
iment literature (Kennedy and O’Hagan (2001), Santner, Williams and Notz (2018), Tuo and
Wu (2015)). Although there are numerous developments on calibration, most of the existing
work are based on scalar parameters rather than functional parameters. Exceptions include
the recent work by Brown and Atamturktur (2018), Plumlee, Joseph and Yang (2016), but
their work is based on continuous outputs with a Gaussian assumption which does not hold
for count data in the epidemic models.

In Section 2 the SIR model and a modified SIR model with functional parameters will be
introduced. The statistical model incorporated with the SIR model will be explicitly described
in Section 3. Numerical studies are conducted in Section 4 to examine the performance. In
Section 5 the statistical model is applied to the COVID-19 outbreak to assess the impacts
of weather and government interventions. Final remarks are given in Section 6. The details
of sampling for the posterior distributions, the R (R Core Team (2018)) code, and the data
for reproducing the results in this paper are provided in the Supplementary Material (Sung
(2022)).

2. Compartmental models in epidemiology.

2.1. SIR model. Compartmental models are widely used in epidemiology which sim-
plify the mathematical modelling of infectious diseases. One of the prominent models is the
SIR model (Diekmann, Heesterbeek and Britton (2013), Kermack and McKendrick (1927))
which assigns the population to three compartments: susceptible (S), infectious (I), and re-
moved (R), where the three compartments respectively represent the number of the suscep-
tible individuals, the infected individuals, and the removed individuals, which include the
ones who are recovered, quarantined or deceased. The SIR model has been widely used for
understanding how a disease spreads in outbreaks of measles, influenza, rubella, smallpox,
Ebola, monkeypox, SARS, and the current COVID-19 pandemic; see, for example, Chen
et al. (2020), Cooper, Mondal and Antonopoulos (2020), D’Arienzo and Coniglio (2020),
Osthus et al. (2017), Roda et al. (2020).

Transitions among the three compartments can be expressed mathematically by three or-
dinary differential equations as follows:

(1)
dS(t)

dt
= −βI (t)S(t)

N
,

dI (t)

dt
= βI (t)S(t)

N
− γ I (t),

dR(t)

dt
= γ I (t),

where S(t), I (t) and R(t) represent the numbers of cases in the corresponding compartments,
N = S(t)+I (t)+R(t) is the total population, β is the contact rate that represents the average
number of contacts per person per time in the susceptible compartment that is sufficient to
spread the disease, and γ is the removed rate from the infectious compartment to the removed
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compartment. The ratio of β and γ is called the basic reproduction number in epidemiology,
often denoted by R0 := β/γ , which indicates the average number of infected cases generated
by a typical infectious individual when introduced into a fully susceptible population. This
number is of great importance in public health and epidemiology which is often used to
measure the transmission potential of a disease or a virus (Dietz (1993), Zhang et al. (2020),
Zhao et al. (2020)). Essentially, when R0 is larger than 1, the infection will be able to start
spreading in a population, and the larger R0 is, the harder it is to control the epidemic.

2.2. Modified SIR model. Although the SIR model has been widely used in epidemiol-
ogy, the model has been shown that it cannot reflect the reality due to its simplifications and
assumptions; see, for example, Heesterbeek et al. (2015), Sung and Hung (2020). In partic-
ular, the constant parameter assumption of β and γ , which implies that the contact rate and
the removed rate are both fixed in the entire process, is too strong and unrealistic (Ambrosio
and Aziz-Alaoui (2020), Cauchemez et al. (2016), Cowling, Ho and Leung (2008), Hong and
Li (2020), Yu (2020)). Therefore, in this article we consider a modified, more flexible SIR
model by assuming that the parameters can vary based on potential factors.

First, similar to Hong and Li (2020), we consider a discrete version of SIR models by
replacing the derivatives in (1) with finite differences, which results in

I (t + 1) − I (t) = βI (t)(N − I (t) − R(t))

N
− γ I (t),

R(t + 1) − R(t) = γ I (t).

Then, by assuming the functional parameters β(x) and γ (x), where x ∈ � ⊆ R
d is a d-

dimensional factor, and expressing the equations in a recursive fashion, a modified SIR model
can be expressed as

I (t + 1) = (
1 + β(x) − γ (x)

)
I (t) + β(x)I (t)

(
I (t) + R(t)

)
/N,

R(t + 1) = R(t) + γ (x)I (t),

and S(t + 1) = N − I (t + 1) − R(t + 1) for t ∈ N ∪ {0}. Thus, the number of the daily
infectious cases at day t , based on the modified SIR, is the difference in susceptible from day
t − 1 to day t , which we denoted as

(2) f
(
t, β(x), γ (x)

) := S(t − 1) − S(t).

3. A statistical model incorporated with the SIR model.

3.1. Gaussian process priors for functional parameters. In this section we introduce a
statistical model incorporated with the modified SIR model in (2). First, denote yt as the daily
reported number of infectious cases at day t , and assume yt follows an independent Poisson
distribution with the mean function that is a fraction of f (t, β(x), γ (x)). That is,

(3) yt
indep.∼ Poi

(
κ(t)f

(
t, β(x), γ (x)

))
,

where κ(t) ∈ (0,1), indicating that only a fraction κ(t) of the total number of infected are
reported. The fraction κ(t) plays a crucial role for taking into account the presence of asymp-
tomatic or undetected, infectious cases which is one of the distinguishing features of COVID-
19. The idea of including the fraction was also mentioned in the literature (e.g., Piazzola,
Tamellini and Tempone (2021) and Ansumali et al. (2020)), but a constant fraction was often
considered which was criticized by Ansumali et al. (2020) as unrealistic. A dynamic frac-
tion as in (3) varying with time is more realistic for the problem. It should be noted that,
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in the model (3), it is intrinsically assumed that the rate of transmission by an infected-
asymptomatic person is the same as the infected-symptomatic person. More sophisticated
models with an additional “asymptomatic-but-infected” compartment, which allow for dif-
ferent transmission rates in the model, may be considered, such as Robinson and Stilianakis
(2013) and Ansumali et al. (2020). However, as pointed out by Ansumali et al. (2020), sev-
eral recent studies show that there is no discernible difference between the two rates in the
COVID-19 outbreak; see, for example, He et al. (2020), Li et al. (2020), Liu et al. (2020),
Wölfel et al. (2020). As such, equal transmission rates are assumed in the proposed model,
and the extension to the compartmental models with the asymptomatic-but-infected compart-
ment, such as the SAIR model of Ansumali et al. (2020), is left for the future work. Such
work could also allow for studying whether the effects of potential factors differ among the
asymptomatic vs. symptomatic persons, such as government interventions.

Notably, as pointed out by Ansumali et al. (2020), another popular epidemic model for the
outbreak, SEIR model (susceptible-exposed-infectious-removed) (Kermack and McKendrick
(1927)), is not as realistic, because the exposed group (E) of the SEIR model does not infect
the susceptible group (S), as the E group does not carry a sufficient viral load to infect others
through contact. This is unlike the asymptomatic-but-infected individuals in the COVID-19
outbreak which do lead to the S group getting infected. As such, a model like the proposed
model accounting for these asymptomatic individuals is more realistic.

The functional parameters in the SIR model are assumed to follow a joint Gaussian process
(GP) prior:

logit
(
β(·)
γ (·)

)
∼ GP

([
μ1(·)
μ2(·)

]
, τA

[
Kφ1

(·, ·) 0
0 Kφ2

(·, ·)
]

A
)
,(4)

where logit(x) = log x
1−x

and

A =
[

1 ρ

ρ 1

]1/2

= 1√
2 + 2

√
1 − ρ2

⎡
⎣1 +

√
1 − ρ2 ρ

ρ 1 +
√

1 − ρ2

⎤
⎦ .(5)

The logit transformation is used here because both β and γ are rates which are bounded from
zero to one, but the GP prior has positive measures over the negative reals. Other transfor-
mation, such as the probit function, �−1(x), the cumulative log-log function, log(− log(x)),
or the identity function, x, could be also used here. μj(·) is the mean function, where we
assume a constant mean, that is, μj(x) = μj . τ > 0 is the process variance, and Kφj

is the
correlation function for which a Gaussian correlation function is commonly used in the form
of Kφj

(x,x′) = exp(−‖φj � (x − x′)‖2
2) for any x,x′ ∈ � ⊆ R

d , where φj ∈ R
d is the un-

known lengthscale parameter and � denotes the elementwise product of two vectors. Note
that the correlation function is usually reparameterized as

(6) Kφj

(
x,x′) =

d∏
l=1

φ
4(xl−x′

l )
2

j l for any x,x′ ∈ �,

where φj = (φj1, . . . , φjd) ∈ (0,1)d , for the purpose of numerical stability, because the do-
main of φjl ∈ (0,1) is now bounded; see, for example, Brown and Atamturktur (2018) and
Mak et al. (2018). As a result, the form of the kernel function (6) is used throughout this
article.

In (4) we assume that logit(β(·)) and logit(γ (·)) are correlated with a positive cross-
correlation, 0 < ρ ≤ 1, which implies that, for any given x ∈ �, the correlation between
logit(β(x)) and logit(γ (x)) is ρ. This can be verified by (5) and the fact that Kφ1

(x,x) =
Kφ2

(x,x) = 1 for any x ∈ �. The dependence assumption of the two parameters, β(·) and
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γ (·), is crucial and appealing from an epidemiological perspective. For the compartmental
models like SIR, it is well known that the parameters are strongly coupled in the model-
ing literature; see, for example, the joint posterior distribution in Roda et al. (2020) which
shows that the two parameters in an SIR model are highly positively correlated. Thus, the
independent GP assumption, as in Brown and Atamturktur (2018) and Plumlee, Joseph and
Yang (2016), is not valid in this application. Note that, unlike the covariance structures in
Banerjee and Gelfand (2002), Qian, Wu and Wu (2008) where the parameters φ1 and φ2 are
assumed to be identical, the covariance structure (4) adopts the one in Fricker, Oakley and
Urban (2013) and Svenson and Santner (2016), which is more flexible, as the two lengthscale
parameters are not necessarily identical.

Lastly, the fraction κ(t) is assumed to have a Gaussian process prior,

(7) logitκ(·) ∼ GP
(
μ3, νKϕ(·, ·))

with ν > 0 and ϕ ∈ (0,1), where Kϕ has the same form of (6).
Suppose that we observe the reported infectious cases in n days which are denoted

by yn = (y1, . . . , yn). Denote κt = κ(t), βt = β(xt ), γt = γ (xt ), κ = (κ1, . . . , κn), β =
(β1, . . . , βn), and γ = (γ1, . . . , γn). Furthermore, denote 1n = (1, . . . ,1)T ∈ R

n×1, Kφj
=

(Kφj
(xi ,xk))1≤i,k≤n ∈ R

n×n, Kϕ = (Kϕ(i, k))1≤i,k≤n ∈ R
n×n, and denote aij as the element

Aij . Then, together with the model assumptions (3), (4), (6), and (7), we have the following
hierarchical model:

yt |β,γ ,κ
indep.∼ Poi

(
κtf (t, βt , γt )

)
for t = 1, . . . , n,

logit
(
β
γ

)
∼ N2n(

[
μ11n

μ21n

]
, τ�),

logit(κ) ∼ Nn(μ31n, νKϕ),

τ ∼ InvGamma(aτ , bτ ),(8)

ρ ∼ Beta(1, bρ),(9)

ν ∼ InvGamma(aν, bν),(10)

ϕ ∼ Beta(1, bϕ),(11)

φjl
indep.∼ Beta(1, bφ) for j = 1,2; l = 1, . . . , d,(12)

μj
indep.∼ N

(
αj , σ

2
j

)
for j = 1,2,3,(13)

where

� =
[

a2
11Kφ1

+ a2
12Kφ2

a11a21Kφ1
+ a12a22Kφ2

a11a21Kφ1
+ a12a22Kφ2

a2
21Kφ1

+ a2
22Kφ2

]
,

and (8), (9), (10), (11), (12), (13) are the priors of the parameters in which InvGamma(a, b)

is an inverse gamma distribution with shape parameter a and rate parameter b, and Beta(1, b)

is a beta distribution with parameters 1 and b.

3.2. Posterior distributions. The goal of this study is to infer the functional parameters
β(x) and γ (x) and, subsequently, investigate whether the d-dimensional factor x plays a role
in varying the basic reproduction number which is denoted by R0(x) := β(x)/γ (x). In ad-
dition, predicting the number of future infections based on forecast weather and government
interventions, say xn+1, is also of great interest. Therefore, the joint posterior distribution of
β(x), γ (x), and the number of the future daily infected cases are developed as follows.
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We first derive the joint posterior distribution of β(x) and γ (x). Denote the parameters
ψ = (τ, ρ, ν,ϕ,φ1,φ2,μ1,μ2) and data = {yt ,xt }1≤t≤n. Then, the posterior distribution,
given observations, can be obtained by

π
(
β(x), γ (x),β,γ ,κ,ψ |data

)
∝ π

(
β(x), γ (x)|β,γ ,κ,ψ,data

)
π(β,γ ,κ,ψ |data),

where π(x|y) denotes the posterior distribution of x given y. Thus, the joint posterior dis-
tribution of β(x) and γ (x) can be approximated by Markov chain Monte Carlo (MCMC) by
drawing the samples from π(β(x), γ (x)|β,γ ,κ,ψ,data) and π(β,γ ,κ,ψ |data) iteratively.
The posterior π(β(x), γ (x)|β,γ ,κ,ψ,data) can be drawn, based on the property of condi-
tional multivariate normal distributions, that is,

logit
(
β(x)

γ (x)

) ∣∣∣β,γ ,κ,ψ,data ∼ N2
(
u(x), s(x)

)
,(14)

where

u(x) =
[
μ1
μ2

]
+ �(x)�−1

(
logit(β) − μ11n

logit(γ ) − μ21n

)

and

s(x) = τ

([
1 ρ

ρ 1

]
− �(x)�−1�(x)T

)

with

�(x) =
[

a2
11kφ1

(x) + a2
12kφ2

(x) a11a21kφ1
(x) + a12a22kφ2

(x)

a11a21kφ1
(x) + a12a22kφ2

(x) a2
21kφ1

(x) + a2
22kφ2

(x)

]
,

where kφj
(x) = (Kφj

(x,x1), . . . ,Kφj
(x,xn)). The MCMC samples of β(x) and γ (x) can

then be obtained by sampling from the multivariate normal distribution of (14) and taking the
inverse of the logit function. For the posterior π(β,γ ,κ,ψ |data), we have

(15)

π(β,γ ,κ,ψ |data)

∝ π(data|β,γ ,κ,ψ)π(β,γ |κ,ψ)π(κ |ψ)π(ψ)

∝ exp

{
−

n∑
t=1

κtf (t, βt , γt )

}
×

n∏
t=1

κ
yt
t f (t, βt , γt )

yt

× exp

{
−1

τ

(
logit(β) − μ11n

logit(γ ) − μ21n

)T

�−1
(

logit(β) − μ11n

logit(γ ) − μ21n

)}

× exp
{
−1

ν

(
logit(κ) − μ31n

)T K−1
ϕ

(
logit(κ) − μ31n

)}

× |�|−1|Kϕ|−1τn+aτ −1 exp{−bτ τ }(1 − ρ)bρ−1νn/2+aν−1 exp{−bνν}

× ϕbϕ−1
2∏

j=1

d∏
l=1

(1 − φjl)
bφ−1 exp

{
−1

2

2∑
j=1

(μj − αj )
2

σ 2
j

}
.

The samples from this posterior distribution can be drawn by Gibbs sampling with
Metropolis–Hastings algorithm, the details of which are given in Section 1 of the Supple-
mentary Material (Sung (2022)).

Now, we move to the posterior distribution of the number of future infections. Let xn+1 be
the forecast weather and government interventions at time n+1, and denote βn+1 = β(xn+1),
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γn+1 = γ (xn+1), κn+1 = κ(n + 1). Then, the posterior distribution of the infected number,
yn+1, given the current observed data, has

π(yn+1, βn+1, γn+1, κn+1,β,γ ,κ,ψ |xn+1,data)

∝ π(yn+1|βn+1, γn+1, κn+1)π(βn+1, γn+1|β,γ ,κ,ψ,xn+1)

× π(κn+1|β,γ ,κ,ψ)π(β,γ ,κ,ψ |data).

Similarly, this posterior distribution can be drawn by MCMC sampling, where the sam-
ples for π(β,γ ,κ,ψ |data) can be drawn, as introduced before, and the samples from
π(βn+1, γn+1|β,γ ,κ,ψ,xn+1) can be similarly drawn from the multivariate normal distri-
bution (14). The samples of κn+1 from π(κn+1|β,γ ,κ,ψ) can be drawn from the posterior
of κ(t),

(16)
logit

(
κ(t)

)|β,γ ,κ,ψ, ∼ N
(
μ3 + kϕ(t)K−1

ϕ

(
logit(κ) − μ31n

)
,

ν
(
1 − kϕ(t)K−1

ϕ kϕ(t)T
))

,

and set t = n + 1, where kϕ(t) = (Kϕ(t,1), . . . ,Kϕ(t, n)). The distribution, π(yn+1|βn+1,

γn+1, κn+1), follows a Poisson distribution with the mean κn+1f (n + 1, βn+1, γn+1). Thus,
the MCMC samples can be drawn iteratively from these posteriors.

4. Simulation study. In this section, simulation studies are conducted to examine the
performance of the proposed method. In the simulations the hyperparameters in the priors
(8), (9), (10), (11), (12), (13), are set as follow. Similar to Brown and Atamturktur (2018), the
shape parameters bρ , bφ , and bϕ are chosen to be 0.1 which place most probability mass near
one to enforce the smoothness for the functional parameters; aτ = aν = 0.01 and bτ = bν =
0.01 are chosen so that the prior is centered at one with standard deviation

√
0.01/0.012 = 10;

for (13) we set αj = 0 and σ 2
j = 1 for j = 1,2,3. For the MCMC sampling, 2000 iterations

are performed in a burn-in period, and after that an additional 2000 MCMC samples are
drawn, which are thinned to reduce autocorrelation.

Suppose that the observation yt is simulated from a Poisson distribution with the mean
function, κ(t)f (t, β(x), γ (x)), where f (t, β(x), γ (x)) = (t/10 + 5β(x) + γ (x)(t/10)2)2

and x is one-dimensional factor in the space [0,1]. Let β(x) = sin(3x) exp(−x) + 0.2,
γ (x) = sin(3x), and κ(t) = exp(−t/50) which are demonstrated in the left and middle panels
of Figure 1. It can be seen that the two curves, β(x) and γ (x), share some similarity over-
all which suggests that the dependence assumption of these two functions is necessary. We
generate x1, . . . , x80 from a uniform distribution and randomly generate n = 80 observations,

FIG. 1. Simulation setting. The left panel demonstrates β(x) (solid line) and γ (x) (dashed line), the middle
panel demonstrates κ(t), and the right panel demonstrates the true mean function, κ(t)f (t, β(x), γ (x)) (dashed
line), and the simulated data (dots).
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FIG. 2. Posteriors of β(x) (left panel), γ (x) (middle panel), and κ(t) (right panel). The gray lines are the
MCMC draws, the solid lines are the posterior mean, and the dashed lines are the true functions.

y1, . . . , y80. The right panel of Figure 1 shows the random samples as dots, where the solid
line is the true mean function, κ(t)f (t, β(x), γ (x)). We use the first 60 samples, y1, . . . , y60,
as the training dataset and the other 20 samples as the test dataset.

Figure 2 shows the posterior draws of β(x), γ (x), and κ(t). It can be seen that the pos-
terior means can recover the true functions very well. The predictions on the test dataset
are presented in Figure 3 which shows that the posterior mean is reasonably close to the
true function. These results demonstrate that the proposed method can perform well for the
models with functional parameters in terms of estimation and prediction.

5. Application to COVID-19. In this section we use the proposed model to analyze
the COVID-19 virus spread among the eight largest metropolitan areas in the United States
(US). In particular, we use the model to estimate the impacts of weather and government
interventions (and their interactions) on virus transmissibility to forecast daily infected cases,
based on these factors, and to estimate the fraction of cases reported.

The data source is briefly introduced here. The daily COVID-19 cases are obtained at the
U.S. county level from the data repository provided by the New York Times (Almukhtar
et al. (2020)), starting from January 25, 2020 to November 25, 2020. The population sizes
are obtained from the census bureau website which also can be found in Yu (2020). The
historical weather data and the weather forecast are collected from the Weather Underground
(The Weather Company (2020)) which include the daily average temperature, humidity, wind
speed, pressure, and precipitation. The information of government interventions is obtained
from New York Times (Lee et al. (2020)) and local media, where we categorize the inter-
ventions into five levels: (0) no intervention, (1) all businesses are open with mask required
and some capacity limitations, (2) all industries resume operations, but some indoor services,

FIG. 3. Posteriors of test data y61, . . . , y80. The gray lines are the MCMC draws, the solid lines are the posterior
mean, and the dashed lines are the true functions.
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FIG. 4. Scatterplots of input factors, where the left diagonal panels are the scatterplots for every pair of factors,
the right diagonal panels are the correlations, and the diagnoal panels are the histograms.

such as bars and restaurants, remain closed, (3) industries resume operations with severe re-
strictions and capacity limitations, and (4) all nonessential businesses are closed. Scatterplots
for every pair of factors are demonstrated in Figure 4 which appears to have no obvious
relationship between any pair of the factors.

Now, we are ready to apply the proposed model to the data, where the setting of the MCMC
sampling is similar to the one in Section 4. Consider the confirmed cases before November
11 as the training data and the cases from November 11 to 25 as the test data. Since the ac-
tual infectious period for COVID-19 is not available and it varies by individual and situation,
as suggested by Centers for Disease Control and Prevention and Wilson (2020), we assume
an infectious period of 11 days from the actual infection to the confirmation of the positive
test result. In other words, we assume that the actual infection occurs 11 days prior to the
confirmation date. The input factor is a six-dimensional variable, that is, x ∈ R

6, including
five variables representing weather data and one variable representing government interven-
tion levels. The MCMC samples of the basic reproduction number can be obtained from the
MCMC samples of β(x) and γ (x) by computing R0(x) = β(x)/γ (x). Since it’s hard to visu-
alize the function R0(x) via a six-dimensional x, similar to Welch et al. (1992), we use a func-
tional ANOVA decomposition (Hoeffding (1948), Santner, Williams and Notz (2018), Sobol’
(1993)) for R0(x) and plot its overall mean and main effects which, respectively, measure the
overall influence and the influence of a single factor on the basic reproduction number. That
is, suppose that x follows a distribution F(x) where F(x) = F1(x1)×F2(x2)× · · ·×Fd(xd),
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FIG. 5. Overall mean of basic reproduction number.

then the overall mean and the main effects of the function R0(x) can be obtained by

(17) m0 :=
∫
�
R0(x)dF(x) and mj(xj ) =

∫
�−j

(
R0(x) − m0

)
dF−j (x−j ),

respectively, where
∫
�−j

· · ·dF−j (x−j ) indicates integration over the variables not in j and

F−j (x−j ) = ∏d
i �=j Fi(xi). Since the MCMC samples of R0(x) are available for any x ∈ � and

the integration in (17) can be approximated by the Monte Carlo integration (Caflisch (1998)),
the samples of the posterior distributions of m0 and mj(xj ) can be naturally drawn via a
Monte Carlo sampling method. This is similar to Le Gratiet, Cannamela and Iooss (2014) for
estimating the Sobol indices through a surrogate model that accounts for both the integration
errors and the surrogate model uncertainty.

The boxplots of the overall means of R0(x) are shown in Figure 5. It can be seen that
among these eight cities, Chicago has the highest basic reproduction number than other cities,
which implies that each existing infection in Chicago can cause more new infections than
other cities, while the existing infection in Baltimore and Houston causes fewer new infec-
tions. Before illustrating the main effects, sensitivity analysis (Sobol’ (1993)) is adopted to
determine which input factors are responsible for the most variation in the basic reproduction
number. The result is shown in Figure 6. Although no unique factor can dominate the others
for all of the cities in terms of sensitivity index, it appears that government interventions have
made stronger impacts than weather factors on the virus spread in most of the cities, espe-
cially in Baltimore and San Francisco. On the other hand, some cities, such as Los Angeles,
Saint Louis, and Atlanta, have shown evidence that temperature has played a crucial role in
explaining the variation of the basic reproduction number.

The main effects of R0(x) are demonstrated in Figure 7. As shown in the sensitivity anal-
ysis, the intervention and temperature factors both have larger variations in the main effects,
ranging from −0.1 to 0.3, whereas the main effects of other weather factors mostly range
from −0.1 to 0.1. Among these six factors, it shows that temperature and government inter-
vention both have negative effects on the virus spread for all of the cities, while other factors
have no common trend. In particular, it appears that a decrease of 10◦F in temperature leads
to an increase of roughly 0.06 (with a standard error (SE) of 0.0354) in the basic reproduction
number. This result is quite promising in the sense that most of the existing methods cannot
directly quantify the effect of temperature on the basic reproduction number. The intervention
factor shows that the basic reproduction number can be effectively reduced if governments
implement more restrictions to combat the COVID-19 outbreak, especially for New York and
San Francisco, where a change from no intervention to the strictest restrictions can lead to a
decrease in the basic reproduction number of approximately 0.42 (SE 0.03). This finding is
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FIG. 6. Main effect indices of basic reproduction number.

consistent with the results in some recent work on the effect of government intervention for
COVID-19, such as Flaxman et al. (2020), Haldar and Sethi (2020), Haug et al. (2020), Wang
et al. (2020).

We further investigate the interaction effects of the basic reproduction number. Particularly,
we focus on the interaction effects between the intervention factor, which is controllable by
governments, and the five weather factors, which are uncontrollable. The sensitivity indices
of these five interaction effects are first computed to compare their relative importance. For
the sake of saving the space, only the interaction effects for New York are demonstrated
here. The sensitivity indices and the interaction plot with the highest index are, respectively,
shown in the left and right panels of Figure 8. It can be seen that the interaction effect be-
tween temperature and government interventions has the highest sensitivity index, and from
the interaction plot of the two factors, it appears that, when governments implement more
restrictions, the effect of temperature on the virus spread tends to be milder. This result sug-
gests that, as the weather gets colder, policymakers may need to implement more restrictions
to mitigate the pandemic.

We validate the proposed model by performing predictions on the test data from November
12 to 25. The prediction results of the eight cities are shown in Figure 9. The predictions are
reasonably accurate over the 14-day period. Particularly, in the cities New York, Los Angeles,
Baltimore, and San Francisco, the infected cases tend to increase over the 14-day period and
our predictions successfully capture the trend. This shows strong empirical justification for
our model specification.

Figure 10 presents the posteriors of the fraction of cases reported, κ(t). The posteriors
show that the actual infections are greatly undetected in most of the cities. This finding co-
incides with the recent results by Noh and Danuser (2021), Pei et al. (2021), U. S. Centers
for Disease Control and Prevention (2021). In particular, San Francisco shows that the frac-
tion less than 40% for the entire time of the ongoing pandemic, and New York shows low
fractions during the peak of confirmed cases which suggests that the number of actual in-
fections during the peak is likely much higher (over 20,000 daily cases) than the confirmed
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FIG. 7. Main effect of basic reproduction number, mj (xj ), which illustrates the influence of a single factor on
the reproduction number.

daily cases (about 8000). The estimation of the fractions provides crucial insights for pub-
lic health, which determines the actual severity of COVID-19 and can be used to develop
effective strategies against the outbreak.

FIG. 8. Interaction effect indices (left) and interaction plot (right) between temperature and government inter-
vention for New York.



IMPACT OF WEATHER AND GOVERNMENT INTERVENTIONS ON COVID-19 2517

FIG. 9. Prediction performance of the proposed model. The dots are the confirmed numbers, the dashed lines
are the fitted values from July 1 to November 11, the gray lines and the solid lines are the MCMC draws and
posterior means for the test data from November 12 to 25.

To examine the robustness of the results, sensitivity analysis for the priors is conducted
which examines the impact of 30 different prior specifications on the resulting posteriors of
R0(x) for the test data. The percentage deviations in the average posterior estimates between
the original model and the models with the 30 alternative prior specifications are computed
which are presented in Figure 11. It appears that the results are somewhat stable under dif-
ferent prior settings, with the average percentage deviation being about 3.6%. The posteriors
based on the data of New York city are found to have higher shifts with some prior settings,
indicating that it may require a bit more care in the future analysis.

6. Concluding remarks. How the weather and government interventions affect the
spread of a disease has been an important question but remains unclear in the literature.
A new statistical model, incorporated with the prominent SIR model, is employed to study
the impact on the COVID-19 virus transmissibility among eight U.S. metropolitan areas.
Gaussian process modeling and sensitivity analysis for the functional parameters enable to
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FIG. 10. The posteriors of the fraction of cases reported, κ(t), where the solid and dashed lines are the median
estimate and 95% confidence intervals, respectively, and the gray dots are the daily confirmed cases.

FIG. 11. The sensitivity analysis for the priors across 30 different prior specifications, which shows the percent-
age deviations between the original posteriors and the posteriors with the alternative priors.



IMPACT OF WEATHER AND GOVERNMENT INTERVENTIONS ON COVID-19 2519

investigate the the main and interaction effects of the factors which could lead to a new in-
tervention strategy for policymakers. This study shows that, among six factors, temperature
and government interventions have stronger impacts on the COVID-19 spread in most of
the cities. The temperature has been found to have negative effects in all of the cities. Other
weather factors, such as wind speed and pressure, do not show common effects among the
eight cities. New York City has shown a strong interaction effect between temperature and
interventions which suggests that more restrictions are necessary to mitigate the outbreak as
the weather gets colder.

Although we found some potential associations between weather and virus transmissibil-
ity, it is worth emphasizing that these associations may not directly imply the causation of
the virus transmissibility, meaning that there might be some lurking/causal variables which
are correlated with these factors that make the associations appear stronger. For instance, as
recent studies have shown (e.g., Soucy et al. (2020), Wilson (2020)), the individual mobility
may have the direct impact on the COVID-19 spread which could be strongly correlated with
weather factors. Therefore, incorporating the information of individual mobility and estimat-
ing the causal effects of mobility and weather is worthwhile to investigate in the future work.
In addition, it is conceivable to consider other potential factors for the virus transmission,
such as private sector (i.e., nongovernmental) interventions, travel restrictions, and public
compliance with government recommendations, such as vaccinations, quarantines, and face
coverings, if the data are available. However, including too many factors may lead to over-
parameterization which, in turn, causes unstable results. A potential solution is to perform
sensitivity analysis to screen out noninfluential factors that have the least effect, and then
remove them from the analysis. We explore these issues in future work.
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SUPPLEMENTARY MATERIAL

Sampling details for the posterior distributions (DOI: 10.1214/22-AOAS1601SUPPA;
.pdf). The details of sampling for the posterior distributions in Section 3.2 are described in
this file.

Data and R code (DOI: 10.1214/22-AOAS1601SUPPB; .zip). A zip file containing the
data and R code for reproducing the results in Sections 4 and 5.
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