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Introduction to UQ and Digital Twins

Digital Twins
The term digital twins has been getting much attention in engineering
and manufacturing for a few years as companies realize the potential
of virtually replicating a real-world environment.

The global market for digital twins in industry alone is projected to
grow to $156 billion by 2030.
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Introduction to UQ and Digital Twins

What Are Digital Twins

A digital twin is a real-time virtual representation of a physical object
or system.

It simulates and monitors real-world processes, enabling control,
testing, and optimization without physical risks.

Figure: Digital twin of an aircraft engine used to monitor performance and troubleshoot
issues in real time. Credit: GE.
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Introduction to UQ and Digital Twins

Uncertainty Quantification (UQ)

Uncertainty Quantification (UQ) is a critical component that powers
the accuracy and reliability of digital twins.
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Introduction to UQ and Digital Twins

Statistical Emulator/ Surrogate Model
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Introduction to UQ and Digital Twins

Rocket Injector Simulator

We consider here a simplex swirl injector system for liquid-propellant
rocket engines.1

1Mak, Sung, et al. (2018). An efficient surrogate model for emulation and physics
extraction of large eddy simulations. JASA.
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Introduction to UQ and Digital Twins

Rocket Injector Simulator

High-fidelity flow simulations are conducted using the theoretical and
numerical framework for modeling high-pressure mixing and
combustion processes.

Figure: Temperature snapshots for two design settings.
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Introduction to UQ and Digital Twins

Rocket Injector Simulator

A key challenge here is that the high-fidelity flow simulations are too
time-consuming for design purposes.

Each simulation requires 28,800 CPU hours to obtain 1,000 snapshots
with time-interval 0.03ms.

Figure: Computational domain with different design variables.
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Introduction to UQ and Digital Twins

Statistical Emulator/ Surrogate Model

A statistical emulator, also known as a surrogate model, is
constructed to approximate the output of a complex simulator.

The goal is to “emulate” the true simulator, including the uncertainty
in the approximation:

f̂ (x) ≈ f (x),

where f (x) represents the true simulator, with x as the input (e.g.,
design variables), and f̂ (x) is the emulator/surrogate model.

Gaussian Processes (GPs) are widely used for building such emulators
due to their flexibility and ability to quantify uncertainty.
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Introduction to UQ and Digital Twins

Model Calibration
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Introduction to UQ and Digital Twins

Model Calibration
Computer models are useful for simulating complex systems, but how
do we ensure they accurately represent reality?

Calibration aligns the computer model’s output with real-world
observations, making it more reliable.

Figure: Calibration of COVID-19 model.2

2Sung and Hung (2024). Efficient calibration for imperfect epidemic models with
applications to the analysis of COVID-19. JRSSC .
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Introduction to UQ and Digital Twins

Active Learning

How can we enhance the accuracy of the statistical emulator?

By strategically selecting “informative” samples xi , we can improve
the emulator’s performance, f̂ (x).
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In the following, I will present two recent works that demonstrate
advancements in active learning techniques.
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Sung, C.-L., Ji, Y., Mak, S., Wang, W., and Tang, T. (2024)

Stacking designs: designing multifidelity computer experiments with
target predictive accuracy, JUQ, 12(1), 157-181.



Multi-Fidelity Computer Experiments Stacking Designs

Motivated Example: Finite Element Simulations

Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

The model can be numerically solved via finite element method.

Input: x = (x1, x2) = (pressure, suction)

Output: f (x): average of thermal stress

e.g., x = (0.23, 0.71)

Figure: average of thermal stress f (0.23, 0.71) = 10.5
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Fidelity Simulations via Mesh Configuration

less accurate but cheaper accurate but expensive

Simulation accuracy

Simulation cost
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Multi-Fidelity Computer Experiments Stacking Designs

Statistical Emulation

Can we leverage both low- and high-fidelity simulations in order to

maximize the accuracy of model predictions,

while minimizing the cost associated with the simulations?
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Multi-Fidelity Computer Experiments Stacking Designs

Notation

fidelity level 1 2 3
output f1(x) f2(x) f3(x)

mesh size h1 > h2 > h3
cost C1 < C2 < C3

Simulation accuracy

Simulation cost
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Multi-Fidelity Computer Experiments Stacking Designs

Existing Methods

Modeling:
Co-kriging or Auto-Regressive (AR) model3:

fl(x) = ρl−1fl−1(x) + Zl−1(x), l = 2, . . . , L

where both fl−1(x) and Zl−1(x) follow Gaussian Process (GP) priors.

GP priors are commonly used in the Bayesian framework to model
unknown functions.

The posterior of the auto-regressive model is a normal distribution
with closed-form posterior mean and variance.

3Kennedy and O’Hagan (2000). Predicting the output from a complex computer
code when fast approximations are available. Biometrika
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Multi-Fidelity Computer Experiments Stacking Designs

Existing Methods

Experimental Design (Nested Space-Filling Design):

XL ⊆ XL−1 ⊆ · · · ⊆ X1

𝑋! 𝑋"

This design improves computational efficiency because it allows us to
compute the difference between any two levels (i.e., fl(Xl) − fl−1(Xl)).
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

Q1: How to emulate the exact solution, i.e., f∞(x) when h∞ → 0?4

Q2: Sample size of each level?

Q3: How many fidelity levels?

Q4: Mesh size/density specification?

Q5: Is it better than single-fidelity simulation?

4Tuo, Wu, and Yu (2014). Surrogate modeling of computer experiments with
different mesh densities. Technometrics
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Level Interpolator

Emulator: Multi-Level (ML) interpolator

Goal: Emulate f∞(x)

Idea: with f0(x) = 0

fL(x) =(f1(x) − f0(x)) + (f2(x) − f1(x)) + · · · + (fL(x) − fL−1(x))
:=Z1(x) + Z2(x) + · · · + ZL(x),

where Zl(x) := (fl(x) − fl−1(x)).

Assume the data is nested XL ⊆ XL−1 ⊆ · · · ⊆ X1

Zl(x) is observed at the nested sites Xl , that is,

Zl(Xl) = fl(Xl) − fl−1(Xl).
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Level Interpolator

The reproducing kernel Hilbert space (RKHS) interpolator for each
Zl(x) = (fl(x) − fl−1(x)) is

Ẑl(x) = Φl(x, Xl)Φl(Xl , Xl)−1Z (Xl),

where Φl is a positive definite kernel function.

ML Interpolator:

f̂L(x) = Ẑ1(x) + Ẑ2(x) + · · · + ẐL(x).
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Multi-Fidelity Computer Experiments Stacking Designs
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Multi-Fidelity Computer Experiments Stacking Designs

Matérn kernel

Assumption: Matérn kernel Φ

Φl(x, x′) = ϕl(∥θl ⊙ (x − x′)∥2)

with
ϕl(r) = σ2

l
Γ(νl)2νl −1 (2√

νl r)ν
l Bνl (2

√
νl r),

νl : smoothness parameter
θl : lengthscale parameter
σ2

l : scalar parameter
Bν : the modified Bessel function of the second kind
Parameters can be estimated via either CV or MLE (by a GP
assumption)
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Multi-Fidelity Computer Experiments Stacking Designs

Error Analysis of ML Interpolator

ML Interpolator f̂L(x) = Ẑ1(x) + Ẑ2(x) + · · · + ẐL(x)

Recall our goal is to emulate f∞(x)

|f∞(x) − f̂L(x)| ≤ |f∞(x) − fL(x)|︸ ︷︷ ︸
simulation error

+ |fL(x) − f̂L(x)|︸ ︷︷ ︸
emulation error

.

(analogue to statistical learning)
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Multi-Fidelity Computer Experiments Stacking Designs
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Multi-Fidelity Computer Experiments Stacking Designs

Idea of Stacking Design

Given a desired accuracy ϵ > 0

We wish ∥f∞ − f̂L∥ < ϵ (i.e., with target predictive accuracy!)

𝑓! − 𝑓" <
𝜖
2
																													 𝑓" − 𝑓'" <

𝜖
2

determine 𝐿 determine sample sizes 𝑛#

Stacking Design
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Multi-Fidelity Computer Experiments Stacking Designs

Control emulation error ∥fL − f̂L∥

Proposition 1: Emulation error
Suppose that

the input space is d-dimensional and is bounded and convex,
Xl is quasi-uniform with sample size nl ,

Then,

|fL(x) − f̂L(x)| ≤ c
L∑

l=1
∥θl∥νl

2 n−νl /d
l ∥fl − fl−1∥NΦl (Ω),

where ∥ · |∥NΦl (Ω) is the RKHS norm.
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Multi-Fidelity Computer Experiments Stacking Designs

Sample size determination nl

Sample size nl can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L∑
l=1

∥θl∥νmin
2 nl

−νmin/d∥fl − fl−1∥NΦl (Ω) + λ
L∑

l=1
nlCl ,

where νmin = minl=1,...,L νl , which gives

nl = µ

(∥θl∥νmin

Cl
∥fl − fl−1∥NΦl (Ω)

)d/(νmin+d)

for some constant µ > 0.

Find µ such that ∥fL − f̂L∥ < ϵ/2
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

Q1: How to emulate the exact solution, i.e., f∞(x)? f̂L

Q2: Sample size of each level? nl

Q3: How many fidelity levels?

Q4: Mesh size/density specification?

Q5: Is it better than single-fidelity simulation?
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Multi-Fidelity Computer Experiments Stacking Designs

Control Simulation Error ∥f∞ − fL∥

Error Rate of Finite Element Simulations
Under some regularity conditions, for a constant α ∈ N,a

|f∞(x) − fL(x)| < c(x)hα
L .

Recall hL is the mesh size.
aTuo, Wu, and Yu (2014). Surrogate modeling of computer experiments with

different mesh densities. Technometrics
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Multi-Fidelity Computer Experiments Stacking Designs

Determine the fidelity level L

Let hl = h02−l where h0/2 is the mesh size of the lowest fidelity
simulator f1(x).

Suppose |f∞(x) − fL(x)| = c1(x)hα
L + O(hα+1

L )

One can show that

∥f∞ − fL∥ = ∥fL − fL−1∥
2α − 1 ,

assuming that the terms of order hα+1
L and higher can be neglected.

∥fL − fL−1∥ can be approximated by ∥ẐL∥.

Find L that ensures ∥ẐL∥
2α−1 ≤ ϵ/2
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Multi-Fidelity Computer Experiments Stacking Designs

Determine the fidelity level L

Let hl = h02−l where h0/2 is the mesh size of the lowest fidelity
simulator f1(x).

Suppose |f∞(x) − fL(x)| = c1(x)hα
L + O(hα+1

L )

One can show that

∥f∞ − fL∥ = ∥fL − fL−1∥
2α − 1 ,

assuming that the terms of order hα+1
L and higher can be neglected.

∥fL − fL−1∥ can be approximated by ∥ẐL∥.
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Multi-Fidelity Computer Experiments Stacking Designs

Determination of α

α can be determined by collected data (can be done only when
L ≥ 3) (details omitted)

α̂ = 1
L − 2

L∑
l=3

∑
x∈Xl

log
(∣∣ fl−1(x)−fl−2(x)

fl (x)−fl−1(x)
∣∣)

nl log 2 .
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

Q1: How to emulate the exact solution, i.e., f∞(x)? f̂L

Q2: Sample size of each level? nl

Q3: How many fidelity levels? L

Q4: Mesh size/density specification? hl = h02−l

Q5: Is it better than single-fidelity simulation?
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example

(Mpa)

Input: x = (x1, x2) = (pressure, suction)
Output: f (x): average of thermal stress

Test data: Simulations with mesh size h ≈ 0 at 20 uniform test input
locations are conducted to examine the performance
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example
We wish ∥f∞ − f̂L∥L2(Ω) < ϵ = 5

𝐿 = 1
0.05ℎ!
0.75𝐶! (sec.)
2.324𝑓! − 𝑓(! !!(#)

NA𝑓% − 𝑓! !!(#)
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example
We wish ∥f∞ − f̂L∥L2(Ω) < ϵ = 5

𝐿 = 2𝐿 = 1
0.0250.05ℎ!
1.070.75𝐶! (sec.)
2.4082.324𝑓! − 𝑓)! !!(#)

NANA𝑓% − 𝑓! !!(#)
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example
We wish ∥f∞ − f̂L∥L2(Ω) < ϵ = 5

𝐿 = 3𝐿 = 2𝐿 = 1
0.01250.0250.05ℎ!
2.131.070.75𝐶! (sec.)
2.4812.4082.324𝑓! − 𝑓*! !!(#)

2.969NANA𝑓% − 𝑓! !!(#)
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example
We wish ∥f∞ − f̂L∥L2(Ω) < ϵ = 5

<
𝜖
2

<
𝜖
2

𝐿 = 4𝐿 = 3𝐿 = 2𝐿 = 1
0.006250.01250.0250.05ℎ!

11.512.131.070.75𝐶! (sec.)
2.4912.4812.4082.324𝑓! − 𝑓-! !!(#)

0.9562.969NANA𝑓% − 𝑓! !!(#)

RMSE of 𝑓-&
= 1.60
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Multi-Fidelity Computer Experiments Stacking Designs

Visualize f̂L(x)
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Figure: (left) f̂4(x) and true test points (red dots); (right) pointwise error bounds
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Multi-Fidelity Computer Experiments Stacking Designs

Cost Complexity Theorem

Theorem
Suppose that

ν := ν1 = · · · = νL

|f∞(x) − fl(x)| < c12−αl

Cl < c22βl

Under some regularity conditions, it follows that

|f∞(x) − f̂L(x)| < ϵ,

with a total computational cost Ctot bounded by

Ctot ≤


c3ϵ− d

ν , α
β > 2ν

d ,

c3ϵ− d
ν | log ϵ|1+ d

ν , α
β = 2ν

d ,

c3ϵ
− d

ν
− 2βν−αd

2α(ν+d) , α
β < 2ν

d .
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Multi-Fidelity Computer Experiments Stacking Designs

Complexity of Single-Fidelity Interpolator

Corollary
Let f̂H(x) be the RKHS interpolator based on single-fidelity data
(XH , fH(XH))

Suppose that (ϵ/2)1+ αd
2νβ ≤ c1hα

H ≤ ϵ/2, where c1 = supx∈Ω c1(x)
Under some regularity conditions, it follows that

|f∞(x) − f̂H(x)| < ϵ,

with a total computational cost CH bounded by

CH ≤ chϵ− β
α

− d
2ν .
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Multi-Fidelity Computer Experiments Stacking Designs

Single-fidelity vs Multi-fidelity

When α
β < 2ν

d ⇒ ML interpolator has a slower cost rate

When α
β ≥ 2ν

d ⇒ Single-fidelity RKHS interpolator has a slower cost
rate

Example 1: β is small and α is large
C1 = 2.9 and C5 = 3
|f∞(x) − f1(x)| = 10, and |f∞(x) − f5(x)| = 0.001

Example 2: ν is very small (i.e., nonsmooth (fl − fl−1))
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

Q1: How to emulate the exact solution, i.e., f∞(x)? f̂L

Q2: Sample size of each level? nl

Q3: How many fidelity levels? L

Q4: Mesh size/density specification? hl = h02−l

Q5: Is it better than single-fidelity simulation? In some cases, yes,
but not always
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Multi-Fidelity Computer Experiments Stacking Designs

Recall Our Model

ML Interpolator:

Zl(x) = fl(x) − fl−1(x), l = 2, . . . , L.

How about Auto-Regressive (AR) model5:

fl(x) = ρl−1fl−1(x) + Zl−1(x), l = 2, . . . , L

where both fl−1(x) and Zl−1(x) follow Gaussian Process (GP) priors.

Both rely on an additive (or linear) structure.

5Kennedy and O’Hagan (2000). Predicting the output from a complex computer
code when fast approximations are available. Biometrika
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Heo, J. and Sung, C.-L. (2025)

Active learning for a recursive non-additive emulator for multi-fidelity
computer experiments, Technometrics, to appear.



Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

Existing Methods
Q: Would it always follow an additive structure?

Figure: A synthetic example6, where n1 = 13, n2 = 8, f1(x) = sin(8πx), and
f2(x) = (x −

√
2)f 2

1 (x).

6Perdikari et al. (2017)
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

RNA Emulator

We propose a Recursive Non-Additive emulator (RNA emulator) to
overcome this limitation in a recursive fashion:

f1(x) = W1(x),

fl(x) = Wl(x, fl−1(x)), l = 2, · · · , L,

The auto-regressive model (fl(x) = ρl−1fl−1(x) + Zl(x)) becomes a
special case!

Model the relationship {Wl}L
l=1 using independent GP priors
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

RNA Emulator

RNA Emulator

W1(x) ∼ GP(α1, τ2
1 Φ1(x, x′)),

Wl(z) ∼ GP(αl , τ2
l Kl(z, z′)), l = 2, · · · , L,

where z = (x, y), and Φ1(z, z′) and Kl(z, z′) are a positive definite kernel.

e.g., squared exponential kernel:

Φl(x, x′) =
d∏

j=1
exp

(
−

(xj − x ′
j )2

θlj

)

Kl(z, z′) = exp
(

−(y − y ′)2

θly

) d∏
j=1

exp
(

−
(xj − x ′

j )2

θlj

)
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

Closed Form Expression of RNA Emulator

Proposition 1: The closed-form expressions

Under the squared exponential kernel, the posterior mean and
variance can be obtained as follows:

µ∗
l (x) : = E[fl (x)|y1, . . . , yl ]

= αl +
nl∑

i=1

ri

d∏
j=1

exp

(
−

(xj − x [l]
ij )2

θlj

)
1√

1 + 2
σ∗2

l−1(x)
θly

exp

(
−

(y [l−1]
i − µ∗

l−1(x))2

θly + 2σ∗2
l−1(x)

)
,

σ∗2
l (x) : = V[fl (x)|y1, . . . , yl ] = τ2

l − (µ∗
l (x) − αl )2+( nl∑

i,k=1

ζik
(

ri rk − τ2
l (K−1

l )ik
) d∏

j=1

exp

(
−

(xj − x [l]
ij )2 + (xj − x [l]

kj )2

θlj

))
.
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RNA Emulator
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After emulating...

However, the emulator still holds the uncertainty in some regions!
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Active Learning for RNA emulator

In multi-fidelity simulation, active learning requires

identifying optimal input locations,

identifying fidelity levels,

accounting for the respective simulation costs simultaneously.

Four active learning strategies for RNA emulator will be introduced:
ALD, ALM, ALC, and ALMC.
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

Active Learning for RNA Emulator

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

    low−fidelity high−fidelity prediction new point

0.00 0.25 0.50 0.75 1.00

ALD
0.00 0.25 0.50 0.75 1.00

ALM
0.00 0.25 0.50 0.75 1.00

ALC
0.00 0.25 0.50 0.75 1.00

ALMC

level high−fidelity low−fidelity predictive variance
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Revisit Motivated Example (Blade Simulation)
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Figure: RMSE and CRPS for the motivated example with respect to the cost.

Chih-Li Sung (MSU) Multi-Fidelity Computer Experiments SC, Stat 56 / 60



Conclusion

Conclusion

Stacking Designs:
Emulates f∞(x) with theoretical guarantees.
Answers key questions, such as optimal sample size and the number of
fidelity levels.
Provides insights into the comparison between single-fidelity and
multi-fidelity approaches.

Active Learning for RNA Emulator:
A more flexible model for emulating fL(x).
Flexibility comes without additional computational cost due to
closed-form posterior mean and variance expressions.
Four active learning strategies are introduced to select fidelity level and
sample location, enhancing emulation accuracy.
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Conclusion

Open-Source Contributions

R package RNAmf (over 2,200 downloads) is available.
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Cumulative Downloads of RNAmf Package (Dec 2023 − Oct 2024)

Reproducibility code for both papers is available on GitHub.
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