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Introduction to UQ and Digital Twins

Digital Twins

@ The term digital twins has been getting much attention in engineering
and manufacturing for a few years as companies realize the potential
of virtually replicating a real-world environment.

@ The global market for digital twins in industry alone is projected to
grow to $156 billion by 2030.
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Introduction to UQ and Digital Twins

What Are Digital Twins

@ A digital twin is a real-time virtual representation of a physical object
or system.

@ |t simulates and monitors real-world processes, enabling control,
testing, and optimization without physical risks.
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Figure: Digital twin of an aircraft engine used to monitor performance and troubleshoot
issues in real time. Credit: GE.
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Introduction to UQ and Digital Twins

Uncertainty Quantification (UQ)

@ Uncertainty Quantification (UQ) is a critical component that powers
the accuracy and reliability of digital twins.
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Introduction to UQ and Digital Twins

Statistical Emulator/ Surrogate Model

Computer Model Statistical Active
(Simulator) Emulator Learning
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Introduction to UQ and Digital Twins

Rocket Injector Simulator

@ We consider here a simplex swirl injector system for liquid-propellant
1

rocket engines.

Swirl Injector Configuration
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!Mak, Sung, et al. (2018). An efficient surrogate model for emulation and physics
extraction of large eddy simulations. JASA.
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Introduction to UQ and Digital Twins

Rocket Injector Simulator

@ High-fidelity flow simulations are conducted using the theoretical and
numerical framework for modeling high-pressure mixing and
combustion processes.
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Figure: Temperature snapshots for two design settings.
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Introduction to UQ and Digital Twins

Rocket Injector Simulator

@ A key challenge here is that the high-fidelity flow simulations are too
time-consuming for design purposes.

@ Each simulation requires 28,800 CPU hours to obtain 1,000 snapshots
with time-interval 0.03ms.
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Figure: Computational domain with different design variables.
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Introduction to UQ and Digital Twins

Statistical Emulator/ Surrogate Model

@ A statistical emulator, also known as a surrogate model, is
constructed to approximate the output of a complex simulator.

@ The goal is to “emulate” the true simulator, including the uncertainty
in the approximation:
F(x) = f(x),
where f(x) represents the true simulator, with x as the input (e.g.,
design variables), and f(x) is the emulator/surrogate model.

@ Gaussian Processes (GPs) are widely used for building such emulators
due to their flexibility and ability to quantify uncertainty.
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Introduction to UQ and Digital Twins

Model Calibration

Computer Model Statistical Active
(Simulator) Emulator Learning
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Introduction to UQ and Digital Twins

Model Calibration

@ Computer models are useful for simulating complex systems, but how
do we ensure they accurately represent reality?

o Calibration aligns the computer model's output with real-world
observations, making it more reliable.
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Figure: Calibration of COVID-19 model.?

2Sung and Hung (2024). Efficient calibration for imperfect epidemic models with

applications to the analysis of COVID-19.
SC, Stat
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Introduction to UQ and Digital Twins

Active Learning

@ How can we enhance the accuracy of the statistical emulator?

@ By strategically selecting “informative” samples x;, we can improve
the emulator’s performance, f(x).

Computer Model Statistical Active
(Simulator) Emulator Learning
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@ In the following, | will present two recent works that demonstrate
advancements in active learning techniques.

Chih-Li Sung (MSU) Multi-Fidelity Computer Experiments SC, Stat



Sung, C.-L., Ji, Y., Mak, S., Wang, W., and Tang, T. (2024)

Stacking designs: designing multifidelity computer experiments with
target predictive accuracy, , 12(1), 157-181.




Multi-Fidelity Computer Experiments Stacking Designs

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.
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Multi-Fidelity Computer Experiments Stacking Designs

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.

@ Input: x = (x1, x2) = (pressure, suction)
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Multi-Fidelity Computer Experiments Stacking Designs

Motivated Example: Finite Element Simulations

@ Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

@ The model can be numerically solved via finite element method.
@ Input: x = (x1, x2) = (pressure, suction)
@ Output: f(x): average of thermal stress

@ eg., x=(0.23,0.71)

Figure: average of thermal stress f(0.23,0.71) = 10.5
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Fidelity Simulations via Mesh Configuration

less accurate but cheaper accurate but expensive

Simulation accuracy

x = (0.50,0.50)

x = (0.23,0.71)

Simulation cost
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Multi-Fidelity Computer Experiments Stacking Designs

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to
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Multi-Fidelity Computer Experiments Stacking Designs

Statistical Emulation

@ Can we leverage both low- and high-fidelity simulations in order to
e maximize the accuracy of model predictions,

e while minimizing the cost associated with the simulations?

High-fidelity
data

Low-fidelity
data

Emulation

Statistical
model
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Multi-Fidelity Computer Experiments Stacking Designs

Notation

fidelity level 1 2 3
output A(x) H(x) (x)

mesh size hy > ho > h3

cost G < G < G

x = (0.50, 0.50)
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Multi-Fidelity Computer Experiments Stacking Designs

Existing Methods

o Modeling:
o Co-kriging or Auto-Regressive (AR) model®:

fi(x) = pi—1fi1(x) + Zi—1(x), 1=2,...,L
where both f;_1(x) and Z;_1(x) follow Gaussian Process (GP) priors.

e GP priors are commonly used in the Bayesian framework to model
unknown functions.

e The posterior of the auto-regressive model is a normal distribution
with closed-form posterior mean and variance.

3Kennedy and O’Hagan (2000). Predicting the output from a complex computer
code when fast approximations are available. Biometrika
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Multi-Fidelity Computer Experiments Stacking Designs

Existing Methods

@ Experimental Design (Nested Space-Filling Design):

XL CX—1C---C X

@ This design improves computational efficiency because it allows us to
compute the difference between any two levels (i.e., f;(X;) — fi—_1(X))).
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

@ Q1: How to emulate the exact solution, i.e., foo(Xx) when hy, — 074

*Tuo, Wu, and Yu (2014). Surrogate modeling of computer experiments with
different mesh densities. Technometrics
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

@ Q1: How to emulate the exact solution, i.e., foo(Xx) when hy, — 074

@ Q2: Sample size of each level?

*Tuo, Wu, and Yu (2014). Surrogate modeling of computer experiments with
different mesh densities. Technometrics
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

@ Q1: How to emulate the exact solution, i.e., foo(Xx) when hy, — 074
@ Q2: Sample size of each level?

@ Q3: How many fidelity levels?

*Tuo, Wu, and Yu (2014). Surrogate modeling of computer experiments with
different mesh densities. Technometrics
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

@ Q1: How to emulate the exact solution, i.e., foo(Xx) when hy, — 074
@ Q2: Sample size of each level?
@ Q3: How many fidelity levels?

@ Q4: Mesh size/density specification?

*Tuo, Wu, and Yu (2014). Surrogate modeling of computer experiments with
different mesh densities. Technometrics
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

@ Q1: How to emulate the exact solution, i.e., foo(Xx) when hy, — 074
@ Q2: Sample size of each level?

@ Q3: How many fidelity levels?

@ Q4: Mesh size/density specification?

@ Q5: Is it better than single-fidelity simulation?

*Tuo, Wu, and Yu (2014). Surrogate modeling of computer experiments with
different mesh densities. Technometrics
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Level Interpolator

@ Emulator: Multi-Level (ML) interpolator

@ Goal: Emulate fi(x)
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Level Interpolator

@ Emulator: Multi-Level (ML) interpolator
@ Goal: Emulate fi(x)
@ Idea: with f(x) =0

fL(x) =(f(x) — fo(x)) + (f2(x) = f(x)) + - + (f(x) = fL-1(x))
=21(x) + Za(x) + - - - + Z1(x),

where Z)(x) := (fi(x) — fi_1(x)).

@ Assume the data is nested X; C X;_1 C--- C X3
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Level Interpolator

@ Emulator: Multi-Level (ML) interpolator
@ Goal: Emulate fi(x)

@ Idea: with f(x) =0

fL(x) =(f(x) — fo(x)) + (f2(x) = f(x)) + - + (f(x) = fL-1(x))
=21(x) + Za(x) + - - - + Z1(x),

where Z)(x) := (fi(x) — fi_1(x)).
@ Assume the data is nested X; C X;_1 C--- C X3

@ Z(x) is observed at the nested sites X], that is,

Zi(X)) = (X)) — f—1(X).
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Level Interpolator

@ The reproducing kernel Hilbert space (RKHS) interpolator for each
Z/(x) = (f(x) - fi-1(x)) is

Z)(x) = &(x, X))®,( X1, X)) T Z (X)),

where @, is a positive definite kernel function.
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Multi-Fidelity Computer Experiments Stacking Designs

Multi-Level Interpolator

@ The reproducing kernel Hilbert space (RKHS) interpolator for each
Z/(x) = (f(x) - fi-1(x)) is

Z)(x) = &(x, X)), (X1, X)) "1 Z(X),
where @, is a positive definite kernel function.

@ ML Interpolator:
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Multi-Fidelity Computer Experiments ~ Stacking Designs

Matérn kernel

Assumption: Matérn kernel ¢
®(x,x") = di([10 © (x = x')|2)
with

¢i(r) = r(yl)2y,_ (2\/>r)l V/(2fr)

v;: smoothness parameter

0, lengthscale parameter

°
°

@ o7: scalar parameter

@ B,: the modified Bessel function of the second kind
°

Parameters can be estimated via either CV or MLE (by a GP
assumption)
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Multi-Fidelity Computer Experiments Stacking Designs

Error Analysis of ML Interpolator

@ ML Interpolator f(x) = Zi(x) + Za(X) + - - - + Z1(X)

@ Recall our goal is to emulate £, (x)
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Multi-Fidelity Computer Experiments Stacking Designs

Error Analysis of ML Interpolator

@ ML Interpolator f(x) = Zi(x) + Za(X) + - - - + Z1(X)

@ Recall our goal is to emulate £, (x)

foo (%) = (%) < |foo(x) — fL(x)| + |fL(x) = Fu(x)]-

simulation error emulation error
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Multi-Fidelity Computer Experiments Stacking Designs

Error Analysis of ML Interpolator

@ ML Interpolator f(x) = Zi(x) + Za(X) + - - - + Z1(X)

@ Recall our goal is to emulate £, (x)

foo (%) = (%) < |foo(x) — fL(x)| + |fL(x) = Fu(x)]-

simulation error emulation error

@ (analogue to statistical learning)
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Multi-Fidelity Computer Experiments Stacking Designs

Idea of Stacking Design

@ Given a desired accuracy € >0
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Multi-Fidelity Computer Experiments Stacking Designs

Idea of Stacking Design

@ Given a desired accuracy € >0

o We wish ||fo, — || < € (i.e., with target predictive accuracy!)
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Multi-Fidelity Computer Experiments Stacking Designs

Idea of Stacking Design

@ Given a desired accuracy € >0

o We wish ||fo, — || < € (i.e., with target predictive accuracy!)

)

Stacking Design
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Multi-Fidelity Computer Experiments Stacking Designs

Control emulation error ||f; — lA‘LH

Proposition 1: Emulation error

Suppose that
@ the input space is d-dimensional and is bounded and convex,
@ X; is quasi-uniform with sample size ny,

Then,

L
> v, —uv/d
() = R0l < ¢ SN0l m N = fiotllg (@),
=1

where || - |HN¢I(Q) is the RKHS norm.
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Multi-Fidelity Computer Experiments Stacking Designs

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L L
Vmin ,, —Vmin/d
/z: 164l157 i~ D £y — £t | () + AD G,
=1 =1

where Vmin = min;—1 _; vy, which gives
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Multi-Fidelity Computer Experiments Stacking Designs

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L L
Vmin ,, —Vmin/d
/z: 164l157 i~ D £y — £t | () + AD G,
=1 =1

where Vmin = min;—1 _; vy, which gives
— ||9I Hymin f f d/(umin+d)
np=p TH [ /—1”/\/4,/(9)

for some constant ;1 > 0.
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Multi-Fidelity Computer Experiments Stacking Designs

Sample size determination n,

@ Sample size n; can be determined by minimizing the error bound and
the total cost by the method of Lagrange multipliers

L
len —Vmin d
E 164112 P16 = fiall g @) + 2D MGy
=1

where Vmin = min;—1 _; vy, which gives
d/(Vmin+d)
= (B i

=M G 1= 11-1lINe, ()

for some constant ;1 > 0.

e Find ;i such that ||f, — f|| < €/2
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

@ Q1: How to emulate the exact solution, i.e., fio(x)? f
@ Q2: Sample size of each level? n,

@ Q3: How many fidelity levels?

@ Q4: Mesh size/density specification?

@ Qb: Is it better than single-fidelity simulation?
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Multi-Fidelity Computer Experiments Stacking Designs

Control Simulation Error ||f, — f||

Error Rate of Finite Element Simulations

Under some regularity conditions, for a constant o € N,?
|foo(x) — fL(X)| < c(x)hT.

Recall h; is the mesh size.

*Tuo, Wu, and Yu (2014). Surrogate modeling of computer experiments with
different mesh densities. Technometrics
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Multi-Fidelity Computer Experiments Stacking Designs

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).
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Multi-Fidelity Computer Experiments Stacking Designs

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).

® Suppose |fuo(x) — fi(x)] = c1(x)h{ + O(h ™)
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Multi-Fidelity Computer Experiments Stacking Designs

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).

@ Suppose |fo(x) — f(x)| = c1(x)h + O(h{*T)
@ One can show that

1L — fLal|

assuming that the terms of order hf“ and higher can be neglected.

o ||fi — fi_1|| can be approximated by || Z;].
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Multi-Fidelity Computer Experiments Stacking Designs

Determine the fidelity level L

@ Let hy = hy2~! where ho/2 is the mesh size of the lowest fidelity
simulator f1(x).

Suppose |fo(x) — fi(x)| = c1(x)hi + O(h{ ™)

@ One can show that

1L — fLal|

— 1l =
I — i) = P

assuming that the terms of order hf“ and higher can be neglected.

|fi — fi_1]| can be approximated by ||Z;||.

o Find L that ensures 2HZ < €/2
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Multi-Fidelity Computer Experiments Stacking Designs

Determination of «

@ « can be determined by collected data (can be done only when
L > 3) (details omitted)

f fi_
log <| 'f/(lix‘) 7 '1(28) |)

n;log?2

1 L
=152

=3 xEX;
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

@ Q1: How to emulate the exact solution, i.e., fio(x)? f
@ Q2: Sample size of each level? n,

@ Q3: How many fidelity levels? L

@ Q4: Mesh size/density specification? h;y = hy2~'

@ Qb: Is it better than single-fidelity simulation?
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example

mesh size = 0.05 mesh size = 0.025 mesh size = 0.0125

@ Input: x = (x1, x2) = (pressure, suction)

@ Output: f(x): average of thermal stress
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example

mesh size = 0.05 mesh size = 0.025 mesh size = 0.0125

@ Input: x = (x1, x2) = (pressure, suction)
@ Output: f(x): average of thermal stress

@ Test data: Simulations with mesh size h ~ 0 at 20 uniform test input
locations are conducted to examine the performance
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example

@ We wish ||fo — ?LHLz(Q) <e=5
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Multi-Fidelity Computer Experiments Stacking Designs

visit Motivated Example

@ We wish ||fo — ?LHLz(Q) <e=5
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nz.
ny- 12

I
sample size

stage 1 2| s«

L=1
hy, 0.05
(sec.)
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example

L=1 L=2
]
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Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example

L=1 L=2 L=3
O 5] O
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N s © 0% ['a 0® o=
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stage 1 2| s«
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hy, 0.05 0.025 0.0125

Multi-Fidelity Computer Experiments SC, Stat



Multi-Fidelity Computer Experiments Stacking Designs

Revisit Motivated Example
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Multi-Fidelity Computer Experiments ~ Stacking Designs

Visualize ;(x)

~ k. |

o 7] 25
—~ © _] 20
E =}
A 15
§ © 7
3 10
=} <

[32]

=}

03 04 05 06 07

pressure (MPa)

Figure: (left) f1(x) and true test points (red dots); (right) pointwise error bounds
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Multi-Fidelity Computer Experiments Stacking Designs

Cost Complexity Theorem

Suppose that

QV =1V ==V
0 |fio(x) — fi(X)] < 127
e (< C22’BI
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Multi-Fidelity Computer Experiments Stacking Designs

Cost Complexity Theorem

Suppose that

QV =1V ==V
0 |fio(x) — fi(X)] < 127
e (< C22’BI

Under some regularity conditions, it follows that
[foo (%) = F1(x)] <,

with a total computational cost G bounded by

_d
cE v, %>%Ty,
_d
Ctotg CG3€ V||Og€|1+y7 %:%Tyu
d_ 2Bv—ad o o
2a(v+d o L
Ge VTR, 4 <
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Multi-Fidelity Computer Experiments Stacking Designs

Complexity of Single-Fidelity Interpolator

o Let 7y(x) be the RKHS interpolator based on single-fidelity data
(Xu, fri(Xn))
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Multi-Fidelity Computer Experiments Stacking Designs

Complexity of Single-Fidelity Interpolator

o Let 7y(x) be the RKHS interpolator based on single-fidelity data
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o Suppose that (e/2)' 728 < c1hfy < €/2, where ¢; = sup,cq c1(x)
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Multi-Fidelity Computer Experiments Stacking Designs

Complexity of Single-Fidelity Interpolator

o Let 7y(x) be the RKHS interpolator based on single-fidelity data
(Xu, fri(Xn))

ad
o Suppose that (e/2)' 728 < c1hfy < €/2, where ¢; = sup,cq c1(x)

Under some regularity conditions, it follows that
|fro(x) = fu(x)| < ¢,

with a total computational cost Cy bounded by

_B_4d
Cy < cpe o 2v,
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@ When % < %" = ML interpolator has a slower cost rate
@ When % > %” = Single-fidelity RKHS interpolator has a slower cost
rate
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Single-fidelity vs Multi-fidelity

@ When % < %" = ML interpolator has a slower cost rate
@ When % > %” = Single-fidelity RKHS interpolator has a slower cost
rate

@ Example 1: §is small and « is large
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Single-fidelity vs Multi-fidelity

@ When % < %" = ML interpolator has a slower cost rate
@ When % > %” = Single-fidelity RKHS interpolator has a slower cost
rate

@ Example 1: §is small and « is large

o (;=29and =3
o |fo(x) — fi(x)] = 10, and |fo(x) — f5(x)| = 0.001
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Single-fidelity vs Multi-fidelity

@ When % < %" = ML interpolator has a slower cost rate
@ When % > %” = Single-fidelity RKHS interpolator has a slower cost
rate

@ Example 1: §is small and « is large

o (;=29and =3
o |fo(x) — fi(x)] = 10, and |fo(x) — f5(x)| = 0.001

@ Example 2: v is very small (i.e., nonsmooth (f; — fi_1))
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Multi-Fidelity Computer Experiments Stacking Designs

Single-fidelity vs Multi-fidelity

@ When % < %" = ML interpolator has a slower cost rate
@ When % > %” = Single-fidelity RKHS interpolator has a slower cost
rate

@ Example 1: §is small and « is large
o (;=29and =3
o |fo(x) — fi(x)] = 10, and |fo(x) — f5(x)| = 0.001

@ Example 2: v is very small (i.e., nonsmooth (f; — fi_1))

fhigh(x) = fiow®) + (fhigh(x) = fiow (%))

B e e e T T T T T LI B
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Multi-Fidelity Computer Experiments Stacking Designs

Questions

@ Q1: How to emulate the exact solution, i.e., foo(x)? 7,
@ Q2: Sample size of each level? n;
@ Q3: How many fidelity levels? L

@ Q4: Mesh size/density specification? h; = hg2~!

Q5: Is it better than single-fidelity simulation? In some cases, yes,
but not always
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Multi-Fidelity Computer Experiments Stacking Designs

Recall Our Model

@ ML Interpolator:

Zi(x) = fi(x) — fi_1(x), I=2,...,L

@ How about Auto-Regressive (AR) model®:
fi(x) = pr—1fici(x) + Zi-1(x), 1=2,...,L

where both f;_1(x) and Z;_1(x) follow Gaussian Process (GP) priors.

®Kennedy and O’Hagan (2000). Predicting the output from a complex computer
code when fast approximations are available. Biometrika
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Multi-Fidelity Computer Experiments Stacking Designs

Recall Our Model

@ ML Interpolator:

Zi(x) = fi(x) — fi_1(x), I=2,...,L

@ How about Auto-Regressive (AR) model®:
fi(x) = pr—1fici(x) + Zi-1(x), 1=2,...,L

where both f;_1(x) and Z;_1(x) follow Gaussian Process (GP) priors.

@ Both rely on an additive (or linear) structure.

®Kennedy and O’Hagan (2000). Predicting the output from a complex computer
code when fast approximations are available. Biometrika
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Heo, J. and Sung, C.-L. (2025)

Active learning for a recursive non-additive emulator for multi-fidelity
computer experiments, , to appear.




eriments  Active Learning for Recursive Non-Additive (RNA) Emulator

Junoh Heo Chih-Li Sung
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

Existing Methods

@ Q: Would it always follow an additive structure?

—2-
0.00 0.25 0.50 0.75 1.00

Auto-regressive

=== Emulator w8 highfidelity &= low-fidelity

Figure: A synthetic example®, where ni = 13, n, = 8, fi(x) = sin(87x), and

f(x) = (x = V2)F(x).

®Perdikari et al. (2017)
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

RNA Emulator

@ We propose a Recursive Non-Additive emulator (RNA emulator) to
overcome this limitation in a recursive fashion:

f(x) = Wi(x),
f(x) = Wi(x, fi—1(x)), I=2,---,L,

@ The auto-regressive model (fi(x) = p;—1fj—1(x) + Z)(x)) becomes a
special case!
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RNA Emulator

@ We propose a Recursive Non-Additive emulator (RNA emulator) to
overcome this limitation in a recursive fashion:

f(x) = Wi(x),
f(x) = Wi(x, fi—1(x)), I=2,---,L,

@ The auto-regressive model (fi(x) = p;—1fj—1(x) + Z)(x)) becomes a
special case!

@ Model the relationship {W;}L_; using independent GP priors
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

RNA Emulator

RNA Emulator
Wi (x) ~ GP(ou, 7'12¢>1(x,x’)),
Wi(z) ~ g73(0z/,7',2K/(z,z’))7 [=2,-- L,

where z = (x,y), and ®1(z,2’) and Kj(z,Z’) are a positive definite kernel.

Chih-Li Sung (MSU) Multi-Fidelity Computer Experiments SC, Stat



Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

RNA Emulator

RNA Emulator

Wi (x) ~ GP(au, 7'12¢>1(x,x’)),
Wi(z) ~ g73(0z/,7',2K/(z,z/))7 [=2,-- L,

where z = (x,y), and ®1(z,2’) and Kj(z,Z’) are a positive definite kernel.

@ e.g., squared exponential kernel:
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

Closed Form Expression of RNA Emulator

Proposition 1: The closed-form expressions

@ Under the squared exponential kernel, the posterior mean and
variance can be obtained as follows:

ui(x) - = E[fi(x)ly, - i

Cs = x5 1 RO
—af+Zf'HeXP< 7 ryshd e

i=1 j=1 1+2U/—1x
[

o7 2(x) : = VIAi(x)lyL, -yl = 77 = (1 (x) — )+

n d (xj — X[’])Z + (% — [’])2
Z G (rire — TR (K i) HeXP o :
l

ik=1 j=1
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Multi-Fidelity Computer Experiments

RNA Emulator

' ' '
0.00 0.25 0.50 0.75 1.00

Auto-regressive

=== Emulator was highfidelity

Iti-Fidelity Computer Experiments

Active Learning for Recursive Non-Additive (RNA) Emulator
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low-fidelity
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Multi-Fidelity Computer Experiments

After emulating...

' ' '
0.00 0.25 0.50 0.75 1.00

Auto-regressive

=== Emulator was highfidelity

Active Learning for Recursive Non-Additive (RNA) Emulator

0.00 0.25 0.50 0.75 1.00

low-fidelity

However, the emulator still holds the uncertainty in some regions!
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Active Learning for RNA emulator

@ In multi-fidelity simulation, active learning requires
e identifying optimal input locations,
o identifying fidelity levels,

e accounting for the respective simulation costs simultaneously.
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Active Learning for RNA emulator

@ In multi-fidelity simulation, active learning requires
e identifying optimal input locations,
o identifying fidelity levels,

e accounting for the respective simulation costs simultaneously.

@ Four active learning strategies for RNA emulator will be introduced:
ALD, ALM, ALC, and ALMC.
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Active Learning for RNA Emulator

| \MMAME MM |
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Multi-Fidelity Computer Experiments Active Learning for Recursive Non-Additive (RNA) Emulator

Revisit Motivated Example (Blade Simulation)

40 25

20
30

RMSE

120 130 140 150 120 130 140 150
Costs Costs
ALD = ALC - - Cokriging-CV
Strategy
== ALM = ALMC MR-SUR

Figure: RMSE and CRPS for the motivated example with respect to the cost.
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Conclusion

Conclusion

e Stacking Designs:

e Emulates 7, (x) with theoretical guarantees.

o Answers key questions, such as optimal sample size and the number of
fidelity levels.

e Provides insights into the comparison between single-fidelity and
multi-fidelity approaches.
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Conclusion

Conclusion

e Stacking Designs:

e Emulates 7, (x) with theoretical guarantees.

o Answers key questions, such as optimal sample size and the number of
fidelity levels.

e Provides insights into the comparison between single-fidelity and
multi-fidelity approaches.

@ Active Learning for RNA Emulator:

e A more flexible model for emulating f(x).

o Flexibility comes without additional computational cost due to
closed-form posterior mean and variance expressions.

e Four active learning strategies are introduced to select fidelity level and
sample location, enhancing emulation accuracy.
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Conclusion

Open-Source Contributions

@ R package RNAmf (over 2,200 downloads) is available.

Cumulative Downloads of RNAmf Package (Dec 2023 - Oct 2024)

2000
1500

1000

Cumulative Downloads

@
8
8

S & »
Date

@ Reproducibility code for both papers is available on GitHub.
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