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Introduction Multi-fidelity data

Multi-Fidelity Simulations

Computer models have been widely adopted to understand a
real-world feature, phenomenon or event.

Computer simulations are used to solve these models (e.g., finite
element / finite difference) .

The simulation can be either

High-fidelity simulation: costly but close to the truth

Low-fidelity simulation: cheaper but less accurate

(intermediate-fidelity simulation)
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Introduction Multi-fidelity data

Motivated Example: Finite Element Simulations

Thermal stress of jet engine turbine blade can be analyzed through a
static structural computer model.

The model can be numerically solved via finite element method.

Input: x = (x1, x2) = (pressure, suction)

Output: f (x): maximum of thermal stress profile

e.g., x = (0.23, 0.71)

maximum of thermal stress profile f (0.23, 0.71) = 20.3
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Introduction Multi-fidelity data

Multi-Fidelity Simulations

less accurate but cheaper accurate but expensive

Simulation accuracy

Simulation cost
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Introduction Multi-fidelity data

Multi-Fidelity Emulation

Can we leverage both low- and high-fidelity simulations in order to

build a statistical emulator, f̂ (x), also known as a surrogate model, to
approximate the output of a high-fidelity complex simulator:

f̂ (x) ≈ f (x),

where f (x) represents the true simulator, with x as the input.

while minimizing the cost associated with the simulations?

High-fidelity
data

Low-fidelity
data

Statistical
model

Model
output

Emulation
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Introduction Multi-fidelity data

Notation

fidelity level 1 2 3
output f1(x) f2(x) f3(x)

simulation cost C1 < C2 < C3

Goal: Emulate fL(x).

Input: Xl = {x[l]
i }nl

i=1 for l = 1, . . . , L.

Output: yl := (fl(x))x∈Xl for l = 1, . . . , L
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Introduction Auto-Regressive Model

Existing Methods

The canonical approach is auto-regressive (AR) model (Kennedy and
O’Hagan, 2000).

AR model assumes additive structure of Gaussian processes (GPs).

f1(x) = Z1(x),
fl(x) = ρl−1fl−1(x) + Zl(x), for 2 ≤ l ≤ L.

Several extensions including Qian et al. (2006); Qian and Wu (2008);
Le Gratiet (2013); Le Gratiet and Garnier (2014); Perdikaris et al.
(2017).
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Introduction Auto-Regressive Model

Existing Methods

Nested design, i.e.,

XL ⊆ XL−1 ⊆ · · · ⊆ X1 ⊆ Ω,

and x[l]
i = x[l−1]

i for i = 1, . . . , nl .

The nested property leads to more efficient inference in various
multi-fidelity emulation approaches (Qian et al., 2009; Qian, 2009).
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Introduction Auto-Regressive Model

Nested Design

𝑋! 𝑋"
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Introduction Auto-Regressive Model

Existing Methods

Q: Would it always follow an additive structure?

An example from Perdikaris et al. (2017), where n1 = 13, n2 = 8,
f1(x) = sin(8πx), and f2(x) = (x −

√
2)f 2

1 (x).
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Heo, J. and Sung, C.-L. (2025)

Active learning for a recursive non-additive emulator for multi-fidelity
computer experiments, Technometrics, 67(1), 58-72.



Active learning for Recursive Non-Additive (RNA) Emulator

RNA Emulator

We propose a Recursive Non-Additive emulator (RNA emulator) to
overcome this limitation in a recursive fashion:

f1(x) = W1(x),

fl(x) = Wl(x, fl−1(x)), l = 2, · · · , L,

The auto-regressive model (fl(x) = ρl−1fl−1(x) + Zl(x)) becomes a
special case!

Model the relationship {Wl}L
l=1 using independent GP priors
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Active learning for Recursive Non-Additive (RNA) Emulator

RNA Emulator
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Active learning for Recursive Non-Additive (RNA) Emulator

RNA Emulator

RNA Emulator

W1(x) ∼ GP(α1, τ2
1 K1(x, x′)),

Wl(z) ∼ GP(αl , τ2
l Kl(z, z′)), l = 2, · · · , L,

where z = (x, y), and K1(x, x′) and Kl(z, z′) are a positive definite kernel.

e.g., squared exponential kernel:

K1(x, x′) =
d∏

j=1
exp

(
−

(xj − x ′
j )2

θ1j

)

Kl(z, z′) = exp
(

−(y − y ′)2

θly

) d∏
j=1

exp
(

−
(xj − x ′

j )2

θlj

)
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Active learning for Recursive Non-Additive (RNA) Emulator

Gaussian Process (GP)

The observed simulations yl follow a multivariate normal distribution:

y1 = W1(X1) ∼ Nn1(α11n1 , τ2
1 K1(X1)) and

yl = Wl(Xl , fl−1(Xl)) ∼ Nnl (αl1nl , τ2
l Kl(Xl , fl−1(Xl))),

for l = 2, . . . , L.

{K1(X1)}ij = K1(x[1]
i , x[1]

j )

{Kl(Xl , fl−1(Xl))}ij = Kl((x[l]
i , fl−1(x[l]

i )), (x[l]
i , fl−1(x[l]

i )))

fl−1(Xl) = (yl−1)1:nl because of the nested assumption!

The parameters {αl , τ2
l , θl}L

l=1 can be estimated by maximum
likelihood estimation
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Active learning for Recursive Non-Additive (RNA) Emulator

Posterior of fL(x) for a new input x

Based on the properties of conditional multivariate normal
distribution, it follows that

fl(x)|yl , fl−1(x) ∼ N (µl(x, fl−1(x)), σ2
l (x, fl−1(x)))

for l = 2, . . . , L with

µl(x, fl−1(x)) = αl1nl + kT
l (x, fl−1(x))Kl(Xl , fl−1(Xl))−1(yl − αl1nl ),

σ2
l (x, fl−1(x)) = τ2

l (1 − kl(x, fl−1(x))T Kl(Xl , fl−1(Xl))−1kl(x, fl−1(x))).

Intractable posterior distribution p(fL(x)|y1, . . . , yL) can be
approximated by Monte Carlo integration.
However, it can be computationally demanding!
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Active learning for Recursive Non-Additive (RNA) Emulator

The closed form expression of RNA emulator

Proposition 1: The closed-form expressions

Under the squared exponential kernel, the posterior mean and
variance can be obtained as follows (Kyzyurova et al., 2018; Ming
and Guillas, 2021):

µ∗
l (x) : = E[fl (x)|y1, . . . , yl ]

= αl +
nl∑

i=1

ri

d∏
j=1

exp

(
−

(xj − x [l]
ij )2

θlj

)
1√

1 + 2
σ∗2

l−1(x)
θly

exp

(
−

(y [l−1]
i − µ∗

l−1(x))2

θly + 2σ∗2
l−1(x)

)
,

σ∗2
l (x) : = V[fl (x)|y1, . . . , yl ] = τ2

l − (µ∗
l (x) − αl )2+( nl∑

i,k=1

ζik
(

ri rk − τ2
l (K−1

l )ik
) d∏

j=1

exp

(
−

(xj − x [l]
ij )2 + (xj − x [l]

kj )2

θlj

))
.
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Active learning for Recursive Non-Additive (RNA) Emulator

The closed form expression of RNA emulator

The closed form expressions can be derived under a Matérn kernel
with the smoothness parameters ν = 1.5 and ν = 2.5 as well.

Adopt the moment matching method to approximate the posterior
distribution. That is, fL(x)|y1, . . . , yL ∼ N (µ∗

L(x), σ∗2
L (x)).

R package called RNAmf is available.
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Active learning for Recursive Non-Additive (RNA) Emulator

RNA emulator
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Active learning for Recursive Non-Additive (RNA) Emulator

Active Learning for RNA emulator
Active learning (also known as Sequential Design)

sequentially searches for and acquires new data points at optimal
location by a given criterion.

In multi-fidelity simulation, active learning requires

identifying optimal input locations,

identifying fidelity levels,

accounting for the respective simulation costs simultaneously.

Four active learning strategies (ALD, ALM, ALC, and ALMC) for
RNA emulator are introduced.

The nested structure assumption implies that, in order to run the
simulation fl(x[l]

nl +1), we need to run fk(x[k]
nk+1) with x[k]

nk+1 = x[l]
nl +1 for

all 1 ≤ k ≤ l .
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Active learning for Recursive Non-Additive (RNA) Emulator

Active Learning Decomposition (ALD)

Select the next point that maximizes the posterior predictive variance
σ∗2

L (x).

Suppose L = 2. We have

σ∗2
2 (x) =V [E[f2(x)|f1(x), y1, y2]] + E [V[f2(x)|f1(x), y1, y2]]

:=V1(x) + V2(x)

To account for the simulation cost Cl , choose the next point x[l]
nl +1 at

level l by maximizing ALD criterion:

(l , x[l]
nl +1) = argmax

k∈{1,2};x∈Ω

Vk(x)∑k
j=1 Cj

.

The closed-form expression facilitates the computation of ALD.
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Active learning for Recursive Non-Additive (RNA) Emulator

Active Learning Decomposition (ALD)
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Active learning for Recursive Non-Additive (RNA) Emulator

Active Learning MacKay (ALM)

Select the next point that maximizes the posterior predictive variance
σ∗2

l (x) (MacKay, 1992).

To account for the simulation cost Cl , choose the next point x[l]
nl +1 at

level l by maximizing ALM criterion:

(l , x[l]
nl +1) = argmax

k∈{1,...,L};x∈Ω

σ∗2
k (x)∑k
j=1 Cj

.

The closed-form expression of σ∗2
k (x) facilitates the computation of

ALM criterion.
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Active learning for Recursive Non-Additive (RNA) Emulator

Active Learning MacKay (ALM)
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Active learning for Recursive Non-Additive (RNA) Emulator

Active Learning Cohn (ALC)

Select an input location that maximizes the variance reduction across
the entire input space after running this selected simulation (Cohn,
1993).

Choose the next point xnl +1 at fidelity level l by minimize the ALC
criterion:

(l , x[l]
nl +1) = argk∈{1,...,L} min

x∈Ω

∫
Ω σ̃∗2

L (ξ; k, x)dξ∑k
j=1 Cj

,

where the numerator is the average in variance (of the
highest-fidelity emulator) with a choice of the fidelity level k and the
input location x.
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Active learning for Recursive Non-Additive (RNA) Emulator

Active Learning Cohn (ALC)
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Active learning for Recursive Non-Additive (RNA) Emulator

Two-step approach: ALMC

Inspired by Le Gratiet and Cannamela (2015), consider the
combination of ALM and ALC.

First, the optimal input location is selected by maximizing the
posterior predictive variance of the highest fidelity emulator:

x∗ = argmax
x∈Ω

σ∗2
L (x).

Then, the ALC criterion determines the fidelity level with the
identified input location:

l∗ = argmax
l∈{1,...,L}

∆σ2
L(l , x∗)∑l
j=1 Cj

,

which aims to maximize the ratio between the variance reduction and
the associated simulation cost.
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Active learning for Recursive Non-Additive (RNA) Emulator

Demonstration
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Active learning for Recursive Non-Additive (RNA) Emulator

Summary of the Four Active Learning Strategies

ALM: the influence of design augmentation on the variance of the
highest-fidelity emulator (of fL) is unclear, but evaluating the criterion
is easy!

ALC: maximize the reduction in variance of the highest-fidelity
emulator (of fL) but evaluating the criterion is quite computationally
intensive.

Both ALD and ALMC generally emerge as favorable choices, offering
accurate RNA emulators along with computational efficiency.
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Active learning for Recursive Non-Additive (RNA) Emulator

Revisit Motivated Example

Low-fidelity (left) and high-fidelity (right) simulations at x = (0.5, 0.45).

Input: x = (x1, x2) = (pressure, suction) ∈ Ω = [0.25, 0.75]2

Output: f (x): maximum of the thermal stress profile
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Active learning for Recursive Non-Additive (RNA) Emulator

Revisit Motivated Example

Perform the finite element simulations with n1 = 20 and n2 = 10.

The simulation time of the finite element simulations, which are
respectively C1 = 2.25 and C2 = 6.85 (seconds) will be used for
active learning.

10 repetitions with ntest = 100 random test input locations generated
by a space-filling design.

We perform finite element simulations using the Partial Differential
Equation Toolbox in MATLAB.
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Active learning for Recursive Non-Additive (RNA) Emulator

Blade: Emulation performance
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RMSE, CRPS, and computation time across 10 repetitions in the turbine blade
application.

Chih-Li Sung (MSU) Active learning for Multi-Fidelity Simulations IMSI Workshop 34 / 49



Active learning for Recursive Non-Additive (RNA) Emulator

Blade: Active learning performance
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Active learning for Recursive Non-Additive (RNA) Emulator

Discussion on Jet Blade Simulations

Jet blade simulations with different mesh configurations

The fidelity level is often controlled by a tuning parameter (e.g., mesh
size).

Q: Can we account for the tuning parameter and extrapolate the
exact solution of finite element simulations (i.e., mesh size = 0)?
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Boutelet, R. and Sung, C.-L. (2025)

Active learning for finite element simulations with adaptive
non-stationary kernel function, arXiv:2503.23158 .



Active learning for Finite Element Simulations

Non-Stationary Model

Non-Stationary Model (Tuo et al., 2014)
The response variable y , at input location x ∈ D with mesh size t ∈ T , is
assumed to be:

y(x, t) = φ(x)︸ ︷︷ ︸
exact solution

+ δ(x, t)︸ ︷︷ ︸
error

,

where φ(x) := y(x, 0) and δ(x, t) are realizations of two mutually
independent GPs, respectively.

Remark: Since y(x, t) must equal to the exact solution φ(x) as t → 0, we
need δ to satisfy δ(x, t) −−→

t→0
0, for all x.
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Active learning for Finite Element Simulations

Non-Stationary Model (Tuo et al., 2014)

The mean function is assumed to have a separable form, such that

E[φ(x)] = f T
1 (x)β1, E[δ(x, t)] = f T

2 (x, t)β2

The covariance function of our response variable is

K (x, x′, t, t ′) = K1(x, x′) + K2(x, x′, t, t ′),

where

φ(x) has a stationary covariance function of the form

K1(x, x′) = σ2
1
∏d

i=1 e−ϕ2
1(xi −x ′

i )2

δ(x, t) has a non-stationary covariance function of the form

K2(x, x′, t, t ′) = σ2
2KH(t, t ′)

∏d
i=1 e−ϕ2

2(xi −x ′
i )2
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Active learning for Finite Element Simulations

Adaptive Non-Stationary Kernel

Tuo et al. (2014) proposed a Brownian Motion (BM) kernel,
KBM(t, t ′) = min(t, t ′)l .

We introduce a new covariance function on the mesh size t, adapted
from the Fractional Brownian Motion (FBM):

KH(t, t ′) =
{

1
2(t2H + (t ′)2H + |t − t ′|2H)

} l
2H

, 0 ≤ H ≤ 1.

The parameter H can be estimated using MLE.

This BM kernel becomes a special case of FBM kernel (H = 0.5).

Chih-Li Sung (MSU) Active learning for Multi-Fidelity Simulations IMSI Workshop 40 / 49



Active learning for Finite Element Simulations

Adaptive Non-Stationary Kernel

Tuo et al. (2014) proposed a Brownian Motion (BM) kernel,
KBM(t, t ′) = min(t, t ′)l .

We introduce a new covariance function on the mesh size t, adapted
from the Fractional Brownian Motion (FBM):

KH(t, t ′) =
{

1
2(t2H + (t ′)2H + |t − t ′|2H)

} l
2H

, 0 ≤ H ≤ 1.

The parameter H can be estimated using MLE.

This BM kernel becomes a special case of FBM kernel (H = 0.5).

Chih-Li Sung (MSU) Active learning for Multi-Fidelity Simulations IMSI Workshop 40 / 49



Active learning for Finite Element Simulations

Adaptive Non-Stationary Kernel

Tuo et al. (2014) proposed a Brownian Motion (BM) kernel,
KBM(t, t ′) = min(t, t ′)l .

We introduce a new covariance function on the mesh size t, adapted
from the Fractional Brownian Motion (FBM):

KH(t, t ′) =
{

1
2(t2H + (t ′)2H + |t − t ′|2H)

} l
2H

, 0 ≤ H ≤ 1.

The parameter H can be estimated using MLE.

This BM kernel becomes a special case of FBM kernel (H = 0.5).

Chih-Li Sung (MSU) Active learning for Multi-Fidelity Simulations IMSI Workshop 40 / 49



Active learning for Finite Element Simulations

Adaptive Non-Stationary Kernel

H = 0 H = 0.5 H = 1
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Sample paths of the non-stationary model using the FBM kernel with three
distinct values of H.
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Active learning for Finite Element Simulations

Active Learning for Finite Element Simulations

We employ the Integrated Mean Squared Prediction Error (IMSPE)
as the foundation of our active learning criterion.

Specifically, the IMSPE from the n design points, In, can be written as

In := IMSPE(Xn, tn) =
∫

x∈D
σ2

n(x, 0)dx.

Recall that σ2
n(x, 0) is the predictive variance for the exact solution

(i.e., y(x, t) at t = 0).
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Active learning for Finite Element Simulations

Active Learning for Finite Element Simulations

Our active learning objective is to find the next best design location
(xn+1, tn+1) by minimizing In+1(xn+1, tn+1) := IMSPE(Xn+1, tn+1).

Theorem: IMSPE Reduction
The IMSPE associated with an additional design point (x̃, t̃) given the
current design (Xn, tn) can be written in an iterative form as (Binois et al.,
2019)

In+1(x̃, t̃) = In − Rn+1(x̃, t̃)

where Rn+1(x̃, t̃), the IMSPE reduction, has a closed-form expression
and can be computed with an O(n2) cost complexity.
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Active learning for Finite Element Simulations

Cost Adjusted IMSPE Reduction

To take the computational cost into account for our criterion, we
choose the next point (xn+1, tn+1) by maximizing the ratio between
the IMSPE reduction and the cost:

(xn+1, tn+1) = arg max
(x̃,t̃)∈X ×T

Rn+1(x̃, t̃)
C(t̃) .
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Active learning for Finite Element Simulations

Demonstration
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Prediction of our model (top), and active learning criterion surface (bottom).
The points represent the current design locations (•), and the best next design
point according to the criterion (×).
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Active learning for Finite Element Simulations

Revisit Motivated Example

(Mpa)

Input: x = (x1, x2) = (pressure, suction) ∈ Ω = [0.25, 0.75]2

Output: f (x): maximum of the thermal stress profile

Test data: Simulations with mesh size t = 0.001 at 50 uniform test
input locations are conducted to examine the performance
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Active learning for Finite Element Simulations

Revisit Motivated Example
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RMSE (in logarithmic scale) for the jet engine turbine blade case study with
respect to the simulation cost. Solid lines indicate the average over 5 repetitions,
while shaded regions represent the range.
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Conclusion

Conclusion

We propose a new, flexible model (RNA emulator) and the
corresponding active learning strategies for multi-fidelity simulations
with discrete fidelity levels.

We introduce a new, adaptive non-stationary kernel function (FBM
kernel) and the IMSPE-based active learning for multi-fidelity
simulations with continuous fidelity levels.

R packages are available for both works.
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