Functional-input Gaussian processes with applications to inverse scattering problems

Chih-Li Sung

Department of Statistics and Probability Michigan State University

EcoSta, August 1-3, 2023

Chih-Li Sung (MSU)

Wenjia Wang (HKUST, Guangzhou)

Fioralba Cakoni (Rutgers)

Isaac Harris (Purdue)

Ying Hung (Rutgers)

EcoSta 2023 2 / 30

Outline

1

Motivated Application

Inverse Scattering Problems

Functional-input Gaussian Processes

- FIGP model
- Theoretical Properties
- 3 Numerical Studies
- 4 Real Application

5 Conclusion

• **Inverse scattering problem** is the problem of determining characteristics of an object, based on data of how it scatters incoming radiation or particles.

Credit to YouTube: Inverse Scattering 101 (Feat. Fioralba Cakoni) by Inverse Problems Channel

• **Inverse scattering problem** is the problem of determining characteristics of an object, based on data of how it scatters incoming radiation or particles.

Credit to YouTube: Inverse Scattering 101 (Feat. Fioralba Cakoni) by Inverse Problems Channel

• Typically **the input is a function** that represents the material properties of an inhomogeneous isotropic scattering region of interest

How to learn f?

• Machine Learning, deep Learning, or statistical regression?

How to learn f?

- Machine Learning, deep Learning, or statistical regression?
- Not applicable! Typically, those methods work when the input lives in a Euclidean space, that is,

How to learn f?

- Machine Learning, deep Learning, or statistical regression?
- Not applicable! Typically, those methods work when the input lives in a Euclidean space, that is,

• x is the input in a Euclidean space.

• Sounds reasonable. But does it really work?

- Sounds reasonable. But does it really work?
- That is,

$$g(\mathbf{x}) pprox \sum_{j=1}^{T} c_j \varphi_j(\mathbf{x})$$

- Sounds reasonable. But does it really work?
- That is,

$$g(\mathbf{x}) pprox \sum_{j=1}^{T} c_j \varphi_j(\mathbf{x})$$

- Sounds reasonable. But does it really work?
- How to choose T? How to take the approximation error into account?
- What if the dimension of x is greater than 3? Curse of dimensionality!

Our contributions

- We propose a new model (called FIGP) that directly uses the functional input without the need of basis expansion!
- Like conventional Gaussian processes (GPs), FIGP provides predictions as well as uncertainty quantification (confidence intervals).
- Theoretical properties are provided, including the convergence rates of the mean squared prediction errors (MSPE) and the connections to experimental design.

Functional-input Gaussian Process (FIGP)

- Suppose that V is a functional space consisting of functions defined on a compact and convex region $\Omega \subset \mathbb{R}^d$.
- $g \in V$ are continuous on Ω , i.e., $V \subset C(\Omega)$.

Functional-input Gaussian Process (FIGP)

- Suppose that V is a functional space consisting of functions defined on a compact and convex region $\Omega \subset \mathbb{R}^d$.
- $g \in V$ are continuous on Ω , i.e., $V \subset C(\Omega)$.
- A functional-input GP, $f: V \to \mathbb{R}$, is denoted by

$$f(g) \sim \mathcal{FIGP}(\mu, K(g, g')),$$

where μ is an unknown mean and K(g, g') is a semi-positive kernel function for $g, g' \in V$.

Functional-input Gaussian Process (FIGP)

- Suppose that V is a functional space consisting of functions defined on a compact and convex region $\Omega \subset \mathbb{R}^d$.
- $g \in V$ are continuous on Ω , i.e., $V \subset C(\Omega)$.
- A functional-input GP, $f: V \to \mathbb{R}$, is denoted by

$$f(g) \sim \mathcal{FIGP}(\mu, K(g, g')),$$

where μ is an unknown mean and K(g, g') is a semi-positive kernel function for $g, g' \in V$.

• How to define K(g, g')? Will go back to this soon.

Prediction and Uncertainty Quantification

• Suppose that g_1, g_2, \ldots, g_n are the inputs and the outputs $\{f(g_i)\}_{i=1}^n$ are observed.

Prediction and Uncertainty Quantification

- Suppose that g_1, g_2, \ldots, g_n are the inputs and the outputs $\{f(g_i)\}_{i=1}^n$ are observed.
- The outputs $\{f(g_i)\}_{i=1}^n$ follow a multivariate normal distribution,

$$(f(g_1),\ldots,f(g_n))'\sim \mathcal{N}_n(\boldsymbol{\mu}_n,\mathbf{K}_n),$$

where mean $\mu_n = \mu \mathbf{1}_n$ and covariance \mathbf{K}_n with $(\mathbf{K}_n)_{i,k} = \mathcal{K}(g_i, g_k)$.

Prediction and Uncertainty Quantification

- Suppose that g_1, g_2, \ldots, g_n are the inputs and the outputs $\{f(g_i)\}_{i=1}^n$ are observed
- The outputs ${f(g_i)}_{i=1}^n$ follow a multivariate normal distribution,

$$(f(g_1),\ldots,f(g_n))'\sim \mathcal{N}_n(\boldsymbol{\mu}_n,\mathbf{K}_n),$$

where mean $\mu_n = \mu \mathbf{1}_n$ and covariance \mathbf{K}_n with $(\mathbf{K}_n)_{i,k} = \mathcal{K}(g_i, g_k)$.

• The hyperparameters in the kernel function K and mean parameter μ can be estimated by likelihood-based approaches or Bayesian approaches

Prediction and Uncertainty Quantification

• Suppose $g \in V$ is an untried new input.

Prediction and Uncertainty Quantification

- Suppose $g \in V$ is an untried new input.
- The corresponding output f(g) follows a normal distribution with the mean and variance.

$$f(g) \sim \mathcal{N}(\mu(g), \sigma^2(g)),$$

where

$$\mu(g) = \mu + \mathbf{k}_n(g)^T \mathbf{K}_n^{-1}(\mathbf{y}_n - \boldsymbol{\mu}_n),$$

$$\sigma^2(g) = \mathcal{K}(g, g) - \mathbf{k}_n(g)^T \mathbf{K}_n^{-1} \mathbf{k}_n(g),$$

where $\mathbf{y}_n^T = (f(g_1), \dots, f(g_n))$ and $\mathbf{k}_n(g) = (\mathcal{K}(g, g_1), \dots, \mathcal{K}(g, g_n))^T.$

A New Class of Kernel Functions

• How to define a kernel function K(g,g') on $V \times V$?

A New Class of Kernel Functions

• How to define a kernel function K(g,g') on $V \times V$?

- We propose a new class of kernel functions:
 - linear kernels and nonlinear kernels.

• The asymptotic convergence properties of the resulting MSPEs will be provided.

Linear Kernel

• Define $\Psi(\mathbf{x}, \mathbf{x}')$ is a positive definite function defined on $\Omega \times \Omega$.

Linear Kernel

- Define $\Psi(\mathbf{x}, \mathbf{x}')$ is a positive definite function defined on $\Omega \times \Omega$.
- By Mercer's theorem, we have

$$\Psi(\mathbf{x},\mathbf{x}') = \sum_{j=1}^{\infty} \lambda_j \phi_j(\mathbf{x}) \phi_j(\mathbf{x}'),$$

where $\mathbf{x}, \mathbf{x}' \in \Omega$, and $\lambda_1 \ge \lambda_2 \ge \ldots > 0$ and $\{\phi_k\}_{k \in \mathbb{N}}$ are the eigenvalues and the orthonormal basis in $L_2(\Omega)$, respectively.

Linear Kernel

- Define $\Psi(\mathbf{x}, \mathbf{x}')$ is a positive definite function defined on $\Omega \times \Omega$.
- By Mercer's theorem, we have

$$\Psi(\mathbf{x},\mathbf{x}') = \sum_{j=1}^{\infty} \lambda_j \phi_j(\mathbf{x}) \phi_j(\mathbf{x}'),$$

where $\mathbf{x}, \mathbf{x}' \in \Omega$, and $\lambda_1 \ge \lambda_2 \ge \ldots > 0$ and $\{\phi_k\}_{k \in \mathbb{N}}$ are the eigenvalues and the orthonormal basis in $L_2(\Omega)$, respectively.

• We construct a GP via the Karhunen–Loève expansion:

$$f(\mathbf{g}\mathbf{x}) = \sum_{j=1}^{\infty} \sqrt{\lambda_j} \langle \phi_j, \mathbf{g}\mathbf{x} \rangle_{L_2(\Omega)} Z_j,$$

where Z_i 's are independent standard normal random variables.

Linear Kernel

Definition: linear kernel function for FIGP

For $g_1, g_2 \in V$,

$$\mathcal{K}(g_1,g_2) = \int_{\Omega} \int_{\Omega} g_1(\mathbf{x}) g_2(\mathbf{x}') \Psi(\mathbf{x},\mathbf{x}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{x}',$$

Linear Kernel

Definition: linear kernel function for FIGP

For $g_1, g_2 \in V$,

$$\mathcal{K}(g_1,g_2) = \int_\Omega \int_\Omega g_1(\mathbf{x}) g_2(\mathbf{x}') \Psi(\mathbf{x},\mathbf{x}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{x}',$$

Proposition 1: positive definiteness

The linear kernel K is semi-positive definite on $V \times V$.

Linear Kernel

Definition: linear kernel function for FIGP

For $g_1, g_2 \in V$,

$$\mathcal{K}(g_1,g_2) = \int_\Omega \int_\Omega g_1(\mathbf{x}) g_2(\mathbf{x}') \Psi(\mathbf{x},\mathbf{x}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{x}',$$

Proposition 1: positive definiteness

The linear kernel K is semi-positive definite on $V \times V$.

Proposition 2: linearity

The FIGP, f(g), constructed based on the linear kernel is linear, i.e., for any $a, b \in \mathbb{R}$ and $g_1, g_2 \in V$, it follows that

$$f(ag_1+bg_2)=af(g_1)+bf(g_2).$$

Theoretical Properties of Linear Kernels

Assumption: Matérn kernel Ψ

$$\Psi(\mathbf{x},\mathbf{x}')=\psi(\|\Theta(\mathbf{x}-\mathbf{x}')\|_2)$$

with

$$\psi(\mathbf{r}) = \frac{\sigma^2}{\Gamma(\nu)2^{\nu-1}} (2\sqrt{\nu}\mathbf{r})^{\nu} B_{\nu}(2\sqrt{\nu}\mathbf{r}),$$

- ν : smoothness parameter
- Θ: lengthscale parameter
- σ^2 : scalar parameter
- B_{ν} : the modified Bessel function of the second kind

Theoretical Properties of Linear Kernels

Corollary 1: MSPE convergence

Suppose g_j , j = 1, ..., n are the first *n* eigenfunctions of Ψ , i.e., $g_i = \phi_i$. For $g \in \mathcal{N}_{\Psi}(\Omega)$, there exists a constant $C_1 > 0$ such that

$$\mathbb{E}\left(f(g)-\mu(g)\right)^2 \leq C_1 \|g\|_{\mathcal{N}_{\Psi}(\Omega)}^2 n^{-\frac{4\nu}{d}}.$$

Theoretical Properties of Linear Kernels

Corollary 1: MSPE convergence

Suppose g_j , j = 1, ..., n are the first n eigenfunctions of Ψ , i.e., $g_j = \phi_j$. For $g \in \mathcal{N}_{\Psi}(\Omega)$, there exists a constant $C_1 > 0$ such that

$$\mathbb{E}\left(f(g)-\mu(g)
ight)^2\leq C_1\|g\|_{\mathcal{N}_\Psi(\Omega)}^2n^{-rac{4
u}{d}}.$$

Corollary 2: MSPE convergence

Define $\mathbf{X}_n \equiv {\mathbf{x}_1, \dots, \mathbf{x}_n}$. Suppose \mathbf{X}_n is quasi-uniform and $g_j(\mathbf{x}) = \Psi(\mathbf{x}, \mathbf{x}_j)$, where $\mathbf{x}, \mathbf{x}_j \in \Omega$ for $j = 1, \dots, n$. For $g \in \mathcal{N}_{\Psi}(\Omega)$, there exists a constant $C_2 > 0$ such that

$$\mathbb{E}\left(f(g)-\mu(g)\right)^2 \leq C_2 \|g\|_{\mathcal{N}_{\Psi}(\Omega)}^2 n^{-\frac{2\nu}{d}}.$$

Extension to Nonlinear Kernel

• Pre-specify a nonlinear transformation $\mathcal M$ on g, i.e., $\mathcal M: V o V'.$

Extension to Nonlinear Kernel

- Pre-specify a nonlinear transformation $\mathcal M$ on g, i.e., $\mathcal M: V \to V'$.
- Construct a GP via the Karhunen-Loève expansion:

$$f(g) = \sum_{j=1}^{\infty} \sqrt{\lambda_j} \langle \phi_j, \mathcal{M} \circ g \rangle_{L_2(\Omega)} Z_j,$$

which results in a nonlinear kernel function

$$\mathcal{K}(g_1,g_2) = \int_\Omega \int_\Omega \mathcal{M} \circ g_1(\mathbf{x}) \mathcal{M} \circ g_2(\mathbf{x}') \Psi(\mathbf{x},\mathbf{x}') \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{x}'$$

• How to specify \mathcal{M} ? There are many possible ways!

Nonlinear Kernel

 \bullet We propose a nonlinear kernel without the need of $\mathcal{M}!$

Nonlinear Kernel

- \bullet We propose a nonlinear kernel without the need of $\mathcal{M}!$
- Let ψ(r) : ℝ⁺ → ℝ be a radial basis function whose corresponding kernel in ℝ^d is strictly positive definite for any d ≥ 1.

Definition: Nonlinear kernel function for FIGP

For
$$g_1, g_2 \in V$$
, $\mathcal{K}(g_1, g_2) = \psi(\gamma \| g_1 - g_2 \|_{L_2(\Omega)}).$

Nonlinear Kernel

- \bullet We propose a nonlinear kernel without the need of $\mathcal{M}!$
- Let ψ(r) : ℝ⁺ → ℝ be a radial basis function whose corresponding kernel in ℝ^d is strictly positive definite for any d ≥ 1.

Definition: Nonlinear kernel function for FIGP For $g_1, g_2 \in V$, $K(g_1, g_2) = \psi(\gamma \| g_1 - g_2 \|_{L_2(\Omega)}).$

 \bullet For example, if ψ is the radial basis function whose corresponding kernel is a Gaussian kernel, then

$$K(g_1, g_2) = \exp(-\gamma^2 \|g_1 - g_2\|_{L_2(\Omega)}^2).$$

Theoretical Properties of Nonlinear Kernels

Proposition 3: positive definiteness

The nonlinear kernel K is positive definite on $V \times V$.

Theoretical Properties of Nonlinear Kernels

Proposition 3: positive definiteness

The nonlinear kernel K is positive definite on $V \times V$.

Corollary 3: MSPE convergence

Suppose that Φ is a Matérn kernel function with smoothness ν_1 , and ψ is the radial basis function whose corresponding kernel is Matérn with smoothness ν . For any $n > N_0$ with a constant N_0 , there exist n input functions such that for any $g \in \mathcal{N}_{\Phi}(\Omega)$ with $\|g\|_{\mathcal{N}_{\Phi}(\Omega)} \leq 1$, the MSPE can be bounded by

$$\mathbb{E}\left(f(g)-\mu(g)\right)^2 \leq C_3(\log n)^{-\frac{(\nu_1+d/2)\tau}{d}}\log\log n.$$

Selection of kernels

• Which kernel are we going to use? Linear or nonlinear?

Selection of kernels

- Which kernel are we going to use? Linear or nonlinear?
- Leave-one-out cross-validation (LOOCV) error:

$$\frac{1}{n}\sum_{i=1}^{n}(\mathbf{y}_{i}-\tilde{\mathbf{y}}_{i})^{2}=\frac{1}{n}\|\mathbf{\Lambda}_{n}^{-1}\mathbf{K}_{n}^{-1}(\mathbf{y}_{n}-\mu\mathbf{1}_{n})\|_{2}^{2},$$

where Λ_n is a diagonal matrix with the element $(\Lambda_n)_{j,j} = (\mathbf{K}_n^{-1})_{j,j}$.

• Choose the one that has a smaller LOOCV error.

- $\bullet \ \Omega \in [0,1]^2$
- test function 1: $f_1(g) = \int_{\Omega} \int_{\Omega} g(\mathbf{x}) dx_1 dx_2$ (linear)
- test function 2: $f_2(g) = \int_{\Omega} \int_{\Omega} g(\mathbf{x})^3 dx_1 dx_2$ (nonlinear)
- test function 3: $f_3(g) = \int_{\Omega} \int_{\Omega} \sin(g(\mathbf{x})^2) dx_1 dx_2$ (nonlinear)

- $\bullet \ \Omega \in [0,1]^2$
- test function 1: $f_1(g) = \int_{\Omega} \int_{\Omega} g(\mathbf{x}) dx_1 dx_2$ (linear)
- test function 2: $f_2(g) = \int_{\Omega} \int_{\Omega} g(\mathbf{x})^3 dx_1 dx_2$ (nonlinear)
- test function 3: $f_3(g) = \int_{\Omega} \int_{\Omega} \sin(g(\mathbf{x})^2) dx_1 dx_2$ (nonlinear)

$g(\mathbf{x})$	$x_1 + x_2$	x ₁ ²	x22	$ 1 + x_1$	$ 1 + x_2$	$ 1 + x_1 x_2$	$ sin(x_1) $	$\cos(x_1+x_2)$
$f_1(g) \\ f_2(g) \\ f_3(g)$	1	0.33	0.33	1.5	1.5	1.25	0.46	0.50
	1.5	0.14	0.14	3.75	3.75	2.15	0.18	0.26
	0.62	0.19	0.19	0.49	0.49	0.84	0.26	0.33

- $\bullet \ \Omega \in [0,1]^2$
- test function 1: $f_1(g) = \int_{\Omega} \int_{\Omega} g(\mathbf{x}) dx_1 dx_2$ (linear)
- test function 2: $f_2(g) = \int_{\Omega} \int_{\Omega} g(\mathbf{x})^3 dx_1 dx_2$ (nonlinear)
- test function 3: $f_3(g) = \int_{\Omega} \int_{\Omega} \sin(g(\mathbf{x})^2) dx_1 dx_2$ (nonlinear)

$g(\mathbf{x})$	$x_1 + x_2$	x ₁ ²	x22	$ 1 + x_1$	$ 1 + x_2$	$ 1 + x_1 x_2$	$ sin(x_1) $	$\cos(x_1+x_2)$
$f_1(g) \\ f_2(g) \\ f_3(g)$	1	0.33	0.33	1.5	1.5	1.25	0.46	0.50
	1.5	0.14	0.14	3.75	3.75	2.15	0.18	0.26
	0.62	0.19	0.19	0.49	0.49	0.84	0.26	0.33

g(x)	$\sin(0.3x_1 + 0.7x_2)$	$0.2 + x_1^2 + x_2^3$	$ \exp\{-0.6x_1x_2\}$
$\begin{array}{c c} f_1(g) \\ f_2(g) \end{array}$? ?	? ?	?
<i>t</i> ₃(g)	?	?	?

	Kernel	$f_1(g) = \int_\Omega \int_\Omega g$	$\int_{\Omega} f_2(g) = \int_{\Omega} \int_{\Omega} g^3$	$\int_{\Omega} f_3(g) = \int_{\Omega} \int_{\Omega} \sin(g^2)$
LOOCV	linear nonlinear	$egin{array}{c} {\bf 8.0 imes 10^{-7}} \ {2.1 imes 10^{-6}} \end{array}$	0.380 0.227	0.095 0.017

	Kernel	$f_1(g) = \int_\Omega \int_\Omega g$	$\int_{\Omega} f_2(g) = \int_{\Omega} \int_{\Omega} g^3$	$\int_{\Omega} f_3(g) = \int_{\Omega} \int_{\Omega} \sin(g^2)$
LOOCV	linear nonlinear	$\begin{array}{c} \textbf{8.0 \times 10^{-7}} \\ 2.1 \times 10^{-6} \end{array}$	0.380 0.227	0.095 0.017

$g(\mathbf{x})$		$sin(0.3x_1 + 0.7x_2)$	$0.2 + x_1^2 + x_2^3$	$exp\{-0.6x_1x_2\}$
- ()	ture	0.468	0.783	0.868
$f_1(g)$	FIGP	0.468 [0.4674, 0.4684]	0.783 [0.7745, 0.7921]	0.868 [0.8673, 0.8686]
f ₂ (g)	ture	0.152	0.919	0.683
	FIGP	0.137 [-0.1868, 0.4609]	0.831 [0.2083, 1.4540]	0.774 [0.0346, 1.513]
	ture	0.248	0.483	0.682
$f_3(g)$	FIGP	0.240 [0.0404, 0.4395]	0.455 [0.1801, 0.7305]	0.482 [0.1412, 0.8231]

- test input 1: $g_9(\mathbf{x}) = \sin(\alpha_1 x_1 + \alpha_2 x_2)$ with $\alpha_1, \alpha_2 \sim U(0, 1)$
- test input 2: $g_{10}(\mathbf{x}) = \beta + x_1^2 + x_2^3$ with $\beta \sim U(0,1)$
- test input 3: $g_{11}(\mathbf{x}) = \exp\{-\kappa x_1 x_2\}$ with $\kappa \sim U(0,1)$
- Simulate 100 times:

- test input 1: $g_9(\mathbf{x}) = \sin(\alpha_1 x_1 + \alpha_2 x_2)$ with $\alpha_1, \alpha_2 \sim U(0, 1)$
- test input 2: $g_{10}(\mathbf{x}) = \beta + x_1^2 + x_2^3$ with $\beta \sim U(0,1)$
- test input 3: $g_{11}(\mathbf{x}) = \exp\{-\kappa x_1 x_2\}$ with $\kappa \sim U(0,1)$
- Simulate 100 times:

Measurements	Method	$f_1(g) = \int_\Omega \int_\Omega g$	$f_2(g) = \int_\Omega \int_\Omega g^2$	$f_3(g) = \int_\Omega \int_\Omega \sin(g)$
MSE	FIGP FPCA Taylor	$\begin{array}{c} \textbf{8.3}\times \textbf{10^{-8}} \\ 0.0017 \\ 6.144 \end{array}$	1.176 8.870 108.928	1.640 2.356 6.954
Coverage (%)	FIGP	100	100	100
	FPCA	75.33	79.00	49.67
	Taylor	100	100	66.67
Score	FIGP	14.740	2.571	3.458
	FPCA	4.587	-1.991	-12.208
	Taylor	2.0597	-1.0283	0.4039

Real Application

Application: Inverse Scattering Problems

Training data

- The outputs are images!
- The following 3 principle components can explain more than 99.9% variations of the data.

- The outputs are images!
- The following 3 principle components can explain more than 99.9% variations of the data.

- The output becomes a 3-dimensional vector: $f_1(g), f_2(g)$ and $f_3(g)$
- Fit an FIGP separately on these three outputs

• test input: $g(\mathbf{x}) = 1 - \sin(x_2)$

• test input: $g(\mathbf{x}) = 1 - \sin(x_2)$

Conclusion

- We propose a new model (FIGP) for problems with functional inputs.
- Numerical studies show that the FIGP provides accurate predictions and uncertainty quantification.
- Theoretical properties of the convergence rate of the mean squared prediction error for FIGP are developed.
- Inverse scattering problems?

Arxiv

Code (Github)

Functional-Input Gaussian Processes with Applications to Inverse Scattering Problems (Reproducibility)

Chih-Li Sung March 15, 2022

This instruction aims to reproduce the results in the paper "Functional-Input Gaussian Processes with Applications to Inverse Scattering Problems" by Sung et al. (https://arxiv.org/abs/2201.01682). Hereafter, functional-Input Gaussian Process is abbreviated by FIGP.

The following results are reproduced in this file

- The sample path plots in Section 4.1 (Figures 2 and 3)
- The prediction results in Section 4.2 (Tables 1, 2, and 3)
- The plots and prediction results in Section 5 (Figures 4, 5, and 6)

Step 0.1: load functions and packages

library(randtoolbox)
library(R.matlab)
library(cubature)
library(plgp)

Chih-Li Sung (MSU)

Ø

Thank You!

