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Motivated Application Inverse Scattering Problems

Inverse Scattering Problems

@ Inverse scattering problem is the problem of determining
characteristics of an object, based on data of how it scatters incoming
radiation or particles.

H (g ofi-center

(<J<JaTD > =)+

Credit to YouTube: Inverse Scattering 101 (Feat. Fioralba Cakoni) by Inverse Problems Channel
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Motivated Application Inverse Scattering Problems

Inverse Scattering Problems

@ Inverse scattering problem is the problem of determining
characteristics of an object, based on data of how it scatters incoming
radiation or particles.

H (g ofi-center

(<J<JaTD > =)+

Credit to YouTube: Inverse Scattering 101 (Feat. Fioralba Cakoni) by Inverse Problems Channel

@ Typically the input is a function that represents the material
properties of an inhomogeneous isotropic scattering region of interest
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Motivated Application Inverse Scattering Problems

Inverse Scattering Problems

system/simulator
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Motivated Application Inverse Scattering Problems

Inverse Scattering Problems

[ g1(x) = 1+ x ]

How to learn 7

[ okx)=1-—x ]

system/simulator
f(si)

=1

y3 = 3.45
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Motivated Application Inverse Scattering Problems

How to learn ?

@ Machine Learning, deep Learning, or statistical regression?
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Motivated Application Inverse Scattering Problems

How to learn ?

@ Machine Learning, deep Learning, or statistical regression?

@ Not applicable! Typically, those methods work when the input lives in
a Euclidean space, that is,
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Motivated Application Inverse Scattering Problems

How to learn ?

@ Machine Learning, deep Learning, or statistical regression?

@ Not applicable! Typically, those methods work when the input lives in

a Euclidean space, that is,

system /simulator

fF(x)f(g)

@ x is the input in a Euclidean space.
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Motivated Application Inverse Scattering Problems

One idea: basis expansion?

@ Sounds reasonable. But does it really work?
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Motivated Application Inverse Scattering Problems

One idea: basis expansion?

@ Sounds reasonable. But does it really work?
@ That is,

;
g(x) ~ > ¢pi(x)
=
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Motivated Application Inverse Scattering Problems

One idea: basis expansion?

@ Sounds reasonable. But does it really work?
@ That is,

;
g(x) ~ > ¢pi(x)
=

system /simulator

f(c)fte)

C:(Cl,...,CT)
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Motivated Application Inverse Scattering Problems

One idea: basis expansion?

@ Sounds reasonable. But does it really work?
@ That is,

;
g(x) ~ > ¢pi(x)
=

system /simulator

f(c)fte)

C:(Cl,...,CT)

@ How to choose T? How to take the approximation error into account?

@ What if the dimension of x is greater than 37 Curse of dimensionality!
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Functional-input Gaussian Processes FIGP model

Our contributions

@ We propose a new model (called FIGP) that directly uses the
functional input without the need of basis expansion!

@ Like conventional Gaussian processes (GPs), FIGP provides
predictions as well as uncertainty quantification (confidence intervals).

@ Theoretical properties are provided, including the convergence rates of
the mean squared prediction errors (MSPE) and the connections to
experimental design.
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Functional-input Gaussian Processes FIGP model

Functional-input Gaussian Process (FIGP)

@ Suppose that V is a functional space consisting of functions defined
on a compact and convex region Q C RY.

@ g € V are continuous on Q, i.e., V C C(Q).
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Functional-input Gaussian Processes FIGP model

Functional-input Gaussian Process (FIGP)

@ Suppose that V is a functional space consisting of functions defined
on a compact and convex region Q C RY.

@ g € V are continuous on Q, i.e., V C C(Q).

@ A functional-input GP, f : V — R, is denoted by

f(g) ~ FIGP(u, K(g,g")),

where g is an unknown mean and K(g, g’) is a semi-positive kernel
function for g, g’ € V.
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Functional-input Gaussian Processes FIGP model

Functional-input Gaussian Process (FIGP)

@ Suppose that V is a functional space consisting of functions defined
on a compact and convex region Q C RY.

@ g € V are continuous on Q, i.e., V C C(Q).

@ A functional-input GP, f : V — R, is denoted by

f(g) ~ FIGP(u, K(g,g")),

where g is an unknown mean and K(g, g’) is a semi-positive kernel
function for g, g’ € V.

@ How to define K(g,g’)? Will go back to this soon.
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Functional-input Gaussian Processes FIGP model

Prediction and Uncertainty Quantification

@ Suppose that g1, g2, ...,&n are the inputs and the outputs {f(gi)}7_;
are observed.
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Functional-input Gaussian Processes FIGP model

Prediction and Uncertainty Quantification

@ Suppose that g1, g2, ...,&n are the inputs and the outputs {f(gi)}7_;
are observed.

@ The outputs {f(gi)}/_; follow a multivariate normal distribution,

(f(gl)a SRR f(gn))/ ~ Nn(”na Kn)7

where mean p,, = 11, and covariance K, with (K,); « = K(gj, 8«)-
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Functional-input Gaussian Processes FIGP model

Prediction and Uncertainty Quantification

@ Suppose that g1, g2, ...,&n are the inputs and the outputs {f(gi)}7_;
are observed.

@ The outputs {f(gi)}/_; follow a multivariate normal distribution,

(f(gl)a SRR f(gn))/ ~ Nn(“na Kn)7

where mean p,, = 11, and covariance K, with (K,); « = K(gj, 8«)-

@ The hyperparameters in the kernel function K and mean parameter p
can be estimated by likelihood-based approaches or Bayesian
approaches
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Functional-input Gaussian Processes FIGP model

Prediction and Uncertainty Quantification

@ Suppose g € V is an untried new input.
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Functional-input Gaussian Processes FIGP model

Prediction and Uncertainty Quantification

@ Suppose g € V is an untried new input.

@ The corresponding output f(g) follows a normal distribution with the
mean and variance,

f(g) ~ N(u(g). o%(g)),

where
1(g) = p+kn(8) K, (¥n — 12n),

o2(g) = K(g, &) — kn(g) "K; 'kn(g),
where y! = (f(g1), -, f(gn)) and kn(g) = (K(g,81), -, K(g,8n)) "
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Functional-input Gaussian Processes FIGP model

A New Class of Kernel Functions

@ How to define a kernel function K(g,g’) on V x V?
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Functional-input Gaussian Processes FIGP model

A New Class of Kernel Functions

@ How to define a kernel function K(g,g’) on V x V?

@ We propose a new class of kernel functions:
o linear kernels and nonlinear kernels.

@ The asymptotic convergence properties of the resulting MSPEs will
be provided.
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Functional-input Gaussian Processes FIGP model

Linear Kernel

@ Define W(x,x’) is a positive definite function defined on Q x Q.
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Functional-input Gaussian Processes FIGP model

Linear Kernel

@ Define W(x,x’) is a positive definite function defined on Q x Q.

@ By Mercer's theorem, we have
W(x, X)) =D Xig(x)e;(X),
=1

where x,x" € Q, and \; > A2 > ... > 0 and {¢x }ken are the
eigenvalues and the orthonormal basis in L2(£2), respectively.
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Functional-input Gaussian Processes FIGP model

Linear Kernel

@ Define W(x,x’) is a positive definite function defined on Q x Q.

@ By Mercer's theorem, we have
W(x, X)) =D Xig(x)e;(X),
=1

where x,x" € Q, and \; > A2 > ... > 0 and {¢x }ken are the
eigenvalues and the orthonormal basis in L2(£2), respectively.

@ We construct a GP via the Karhunen—Loéve expansion:
f(g*) = Z \/E(Qb_/,g*) L2(Q)Zja
j=1

where Z;'s are independent standard normal random variables.
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Functional-input Gaussian Processes FIGP model

Linear Kernel

Definition: linear kernel function for FIGP
For g1,0 € V,

K(g1,82) //g1(x & (X )V(x,x")dxdx’,
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Functional-input Gaussian Processes FIGP model

Linear Kernel

Definition: linear kernel function for FIGP

For g17g2 € Vy

K(gl,gg):/Q/Qgl(x)gg(x’)lll(x,x’)dxdx',

Proposition 1: positive definiteness

The linear kernel K is semi-positive definite on V x V.
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Functional-input Gaussian Processes FIGP model

Linear Kernel

Definition: linear kernel function for FIGP
For g1,0 € V,

K(g1,82) //gl(x & (X )V(x,x")dxdx’,

Proposition 1: positive definiteness

The linear kernel K is semi-positive definite on V x V.

Proposition 2: linearity

The FIGP, f(g), constructed based on the linear kernel is linear, i.e., for
any a,b € R and g1,g> € V, it follows that

f(ag1 + bgz) = af (g1) + bf(g2).
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Functional-input Gaussian Processes = Theoretical Properties

Theoretical Properties of Linear Kernels

Assumption: Matérn kernel V

V(x,x') = ¢([[0(x — x)|2)
with

¥ = )QV = V) By (2vr),

@ v: smoothness parameter
@ O: lengthscale parameter
@ 0?: scalar parameter

@ B,: the modified Bessel function of the second kind
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Functional-input Gaussian Processes = Theoretical Properties

Theoretical Properties of Linear Kernels

Corollary 1: MSPE convergence

Suppose gj, j = 1,...,n are the first n eigenfunctions of V, i.e, g; = ¢;.
For g € Ny(Q), there exists a constant C; > 0 such that

_ 4y
E (f(g) — 1(g))* < Gillglig@)n -

Chih-Li Sung (MSU) Functional-input Gaussian processes JSM 2024 16 /



Functional-input Gaussian Processes = Theoretical Properties

Theoretical Properties of Linear Kernels

Corollary 1: MSPE convergence

Suppose gj, j = 1,...,n are the first n eigenfunctions of V, i.e, g; = ¢;.
For g € Ny(Q), there exists a constant C; > 0 such that

E(f(g) - 1(8))* < Cillglayn ¥-

Corollary 2: MSPE convergence

Define X, = {x1,...,Xn}. Suppose X, is quasi-uniform and
gj(x) = V(x,x;), where x,x; € Q for j =1,...,n. For g € Ny(Q), there
exists a constant C; > 0 such that

E(f(g) - M(g))z < C2Hg”%\/w(g)n_7.

.
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Functional-input Gaussian Processes = Theoretical Properties

Extension to Nonlinear Kernel

@ Pre-specify a nonlinear transformation M on g, i.e., M :V — V/.
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Functional-input Gaussian Processes = Theoretical Properties

Extension to Nonlinear Kernel

@ Pre-specify a nonlinear transformation M on g, i.e., M :V — V/.

@ Construct a GP via the Karhunen—Loéve expansion:

flg)=> \E (¢j, Mo g)1,0)
j=1
which results in a nonlinear kernel function

K(g1,82) //M0g1 x)M o go(xX' )W (x, x")dxdx’

@ How to specify M7 There are many possible ways!

17/33
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Functional-input Gaussian Processes = Theoretical Properties

Nonlinear Kernel

@ We propose a nonlinear kernel without the need of M!
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Functional-input Gaussian Processes = Theoretical Properties

Nonlinear Kernel

@ We propose a nonlinear kernel without the need of M!

@ Let ¢(r) : RT — R be a radial basis function whose corresponding
kernel in R is strictly positive definite for any d > 1.

Definition: Nonlinear kernel function for FIGP

For g1,82 € V,
K(g1,82) = ¥ (7lle1 — &2l (@))-
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Functional-input Gaussian Processes = Theoretical Properties

Nonlinear Kernel

@ We propose a nonlinear kernel without the need of M!

@ Let ¢(r) : RT — R be a radial basis function whose corresponding
kernel in R is strictly positive definite for any d > 1.

Definition: Nonlinear kernel function for FIGP

For g1,82 € V,
K(g1,82) = ¥ (7lle1 — &2l (@))-

@ For example, if 1 is the radial basis function whose corresponding
kernel is a Gaussian kernel, then

K(g1, 82) = exp(—7°llg1 — &217,(q))-
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Functional-input Gaussian Processes Theoretical Properties

Theoretical Properties of Nonlinear Kernels

Proposition 3: positive definiteness
The nonlinear kernel K is positive definite on V x V.
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Functional-input Gaussian Processes Theoretical Properties

Theoretical Properties of Nonlinear Kernels

Proposition 3: positive definiteness

The nonlinear kernel K is positive definite on V x V.

Corollary 3: MSPE convergence

Suppose that ® is a Matérn kernel function with smoothness 4, and ¥ is
the radial basis function whose corresponding kernel is Matérn with
smoothness v. For any n > Ny with a constant Ny, there exist n input
functions such that for any g € No(Q2) with ||g[|a, (@) < 1, the MSPE can
be bounded by

(v1+d/2)T

E(f(g) — u(g))® < Cs(logn)™ @  loglogn.
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Functional-input Gaussian Processes = Theoretical Properties

Selection of kernels

@ Which kernel are we going to use? Linear or nonlinear?
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Functional-input Gaussian Processes = Theoretical Properties

Selection of kernels

@ Which kernel are we going to use? Linear or nonlinear?

@ Leave-one-out cross-validation (LOOCV) error:
1¢ o2 _ Lia-1pe-1 2
=Y i =3 = S IATTKS (e — pdn)II3,
n = n
where A, is a diagonal matrix with the element (A,);; = (K;1); ;.

@ Choose the one that has a smaller LOOCV error.
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Numerical Studies

Numerical Studies

e Qe[0,1]?

@ test function 1: fi(g) = [q [ g(x)dxidxs ( )

e test function 2: f(g) = Jq Jo &(x)3dxidxs ( )

e test function 3: (g) = [o Jo sin(g(x)?)dxidxa( )
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Numerical Studies

Numerical Studies

e Qe[0,1]?

@ test function 1: fi(g) = [q [ g(x)dxidxs ( )

e test function 2: f(g) = Jq Jo &(x)3dxidxs ( )

e test function 3: (g) = [o Jo sin(g(x)?)dxidxa( )

g(x) ‘ X1+ xo ‘ X12 ‘ x22 ‘ 14+ x ‘ 14 x ‘ 14 x1x0 ‘ sin(x1) ‘ cos(x1 + x2)
fi(g) 1 0.33 | 0.33 1.5 1.5 1.25 0.46 0.50
flg) | 15 | 014|014 | 375 | 3.75 2.15 0.18 0.26
3(g) 0.62 0.19 | 0.19 0.49 0.49 0.84 0.26 0.33
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Numerical Studies

Numerical Studies

e Qe[0,1]?

@ test function 1: fi(g) = [q [ g(x)dxidxs ( )

e test function 2: f(g) = Jq Jo &(x)3dxidxs (

e test function 3: (g) = [o Jo sin(g(x)?)dxidxa(

g(x) ‘ X1+ xo ‘ X12

‘ X22 ‘ 14+ x ‘ 14 x ‘ 14 x1x0 ‘ sin(x1)

| cos(x1 + x2)

fi(g) 1 0.33
f(g) 15 0.14
fi(g) | 062 | 0.19

0.33 1.5 1.5 1.25 0.46
0.14 3.75 3.75 2.15 0.18
0.19 0.49 0.49 0.84 0.26

0.26

0.50
0.33

g(x) | sin(0.3x1 +0.7x2) | 0.2+ x2+ x5 | exp{—0.6x1x2}

fi(g)
f(g)
f3(g)

?
?
?

?
?
?

JSM 2024
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Numerical Studies

Numerical Studies

‘ Kernel ‘ ﬁ(g):fnfgg ‘ fz(g):fﬂfng?’ ‘ ﬁ(g):fnfgsin(gz)
8.0 x 107 ‘ 0.380 ‘ 0.095

linear

LOOCV .
nonlinear

2.1x10°° 0.227 0.017
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Numerical Studies

Numerical Studies

‘ Kernel ‘ ﬁ(g):fnfgg ‘ fz(g):fﬂfng?’ ‘ ﬁ(g):fnfgsin(gz)

linear 8.0 x 10~ 0.380 0.095
Loocv nonlinear 2.1x 106 ‘ 0.227 ‘ 0.017
g(x) | | sin(0.3x1 +0.7x2) | 024 x2+x3 | exp{—0.6x1x2}
ture 0.468 0.783 0.868
fi(g) | prep 0.468 0.783 0.868
[0.4674, 0.4684] [0.7745, 0.7921] | [0.8673, 0.8686]
ture 0.152 0.919 0.683
£(8) | prep 0.137 0.831 0.774
[-0.1868, 0.4609] | [0.2083, 1.4540] | [0.0346, 1.513]
ture 0.248 0.483 0.682
A(8) | prep 0.240 0.455 0.482
[0.0404, 0.4395] | [0.1801, 0.7305] | [0.1412, 0.8231]
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Numerical Studies

Numerical Studies

@ test input 1: go(x) = sin(a1x1 + aox2) with ag, an ~ U(0,1)
e test input 2: gio(x) = B+ x? + x5 with 3 ~ U(0,1)

@ test input 3: g11(x) = exp{—rx1x2} with x ~ U(0,1)

@ Simulate 100 times:
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Numerical Studies

Numerical Studies

@ test input 1: go(x) = sin(a1x1 + aox2) with ag, an ~ U(0,1)
e test input 2: gio(x) = B+ x? + x5 with 3 ~ U(0,1)

@ test input 3: g11(x) = exp{—rx1x2} with x ~ U(0,1)

@ Simulate 100 times:

Measurements ‘ Method ‘ ﬂ(g):fﬂfﬂg ‘ 1‘2(g):fQ fﬂgz ‘ ;%(g):fﬂfnsin(g)

FIGP 8.3 x 108 1.176 1.640

MSE FPCA 0.0017 8.870 2.356
Taylor 6.144 108.928 6.954

FIGP 100 100 100

Coverage (%) FPCA 75.33 79.00 49.67
Taylor 100 100 66.67

FIGP 14.740 2.571 3.458
Score FPCA 4.587 -1.991 -12.208
Taylor 2.0597 -1.0283 0.4039
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Real Application

Application: Inverse Scattering Problems

g(x1x2)=1 g(xLx2)=1+x1 gixLx2)=1-x1 GXLXD)=Lex1x2 a1
S Z o S
Z 4 2= g .
% “"'/“% f‘% O i /// /&// S /iz-“”/

gx1x2)=1+x2 g(xLx2)=1-x2"2

b§ﬁﬂ
s } N
017 01

gXLx2)=1+x1"2 g(x1x2)=1-x1"2 (XL x2)=14x2"2

%yy/“{@/ s //
Y

cl
/
o

7

&

o
o

7
&
o
)

Training data
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Real Application

Application: Inverse Scattering Problems

@ The outputs are images!

@ The folllowing 3 principle components can explain more than 99.9%
variations of the data.

pPC2

&
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Real Application

Application: Inverse Scattering Problems

@ The outputs are images!

@ The folllowing 3 principle components can explain more than 99.9%
variations of the data.

pPC2

&

@ The output becomes a 3-dimensional vector: fi(g), f2(g) and f3(g)

o Fit an FIGP separately on these three outputs
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Real Application

Application: Inverse Scattering Problems

@ test input: g(x) =1 —sin(x2)

Chih-Li Sung (MSU) Functional-input Gaussian processes JSM 2024 26 /33



Real Application

Application: Inverse Scattering Problems

@ test input: g(x) =1 —sin(x2)
g(x1,x2)=1-sin(x2) FIGP prediction
s - 01
1 ) ( ( ) (
Noos o Noos 2
® |~o0 X

)z () P\

FPCA prediction

T3 log(variance)

A

/i«
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Conclusion

Conclusion

@ We propose a new model (FIGP) for problems with functional inputs.

@ Numerical studies show that the FIGP provides accurate predictions
and uncertainty quantification.

@ Theoretical properties of the convergence rate of the mean squared
prediction error for FIGP are developed.

@ Inverse scattering problems?
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Conclusion

Bayesian Approach for Functional Inverse

@ Assume g(x) follows a GP prior:

g(x)|m, o2 ~ GP(0, 720y (x, X))

yP
i- .
[ '
o
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Conclusion

Bayesian Approach for Functional Inverse

@ Assume g(x) follows a GP prior:

g(x)|n7 0-2 ~ gP(Oa qu)n(xa X/))

posterior mean of g posterior variance of g

.,
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Conclusion

Bayesian Approach for Functional Inverse

@ Assume g(x) follows a GP prior:

g(x)|n7 0-2 ~ gP(Oa qu)n(xa X/))

3 mean of y*(g) variance of y*(g)
o 4 = Noseg,/
r ') /
(]
o . i %
LF ~009 3606, \,
N or| o™ S0y,
] 7 L \
e=tm \ ’
=
posterior mean of g posterior variance of g
P oo, N
I
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Conclusion

@ Sung, C.-L., Wang, W., Cakoni, F., Harris, |., & Hung, Y. (2024). Functional-input
Gaussian processes with applications to inverse scattering problems. Statistica Sinica,
34(4), to appear.

@ Sung, C.-L., Song, Y., & Hung, Y. (2024+). Advancing inverse scattering with surrogate
modeling and Bayesian inference for functional inputs. arXiv preprint arXiv:2305.01188.
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Conclusion

Code (Github)

‘= README.md Va

Functional-Input Gaussian Processes with Applications
to Inverse Scattering Problems (Reproducibility)

Chih-Li Sung March 15, 2022

This instruction aims to reproduce the results in the paper “Functional-Input Gaussian Processes with Applications
to Inverse Scattering Problems" by Sung et al. (https://arxiv.org/abs/2201.01682). Hereafter, functional-Input
Gaussian Process is abbreviated by FIGP.

The following results are reproduced in this file

¢ The sample path plots in Section 4.1 (Figures 2 and 3)
« The prediction results in Section 4.2 (Tables 1, 2, and 3)

¢ The plots and prediction results in Section 5 (Figures 4, 5, and 6)

Step 0.1: load functions and packages

library(randtoolbox)
library(R.matlab)
library(cubature)
library(plgp)
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